Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 103(6-1): 062145, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271708

ABSTRACT

We mimic random nanowire networks by the homogeneous, isotropic, and random deposition of conductive zero-width sticks onto an insulating substrate. The number density (the number of objects per unit area of the surface) of these sticks is supposed to exceed the percolation threshold, i.e., the system under consideration is a conductor. To identify any current-carrying part (the backbone) of the percolation cluster, we have proposed and implemented a modification of the well-known wall follower algorithm-one type of maze solving algorithm. The advantage of the modified algorithm is its identification of the whole backbone without visiting all the edges. The complexity of the algorithm depends significantly on the structure of the graph and varies from O(sqrt[N_{V}]) to Θ(N_{V}). The algorithm has been applied to backbone identification in networks with different number densities of conducting sticks. We have found that (i) for number densities of sticks above the percolation threshold, the strength of the percolation cluster quickly approaches unity as the number density of the sticks increases; (ii) simultaneously, the percolation cluster becomes identical to its backbone plus simplest dead ends, i.e., edges that are incident to vertices of degree 1. This behavior is consistent with the presented analytical evaluations.

2.
Phys Rev E ; 103(4-1): 042113, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005923

ABSTRACT

Connectedness percolation phenomena in the two-dimensional packing of elongated particles (discorectangles) were studied numerically. The packings were produced using random sequential adsorption off-lattice models with preferential orientations of the particles along a given direction. The partial ordering was characterized by the order parameter S, with S=0 for completely disordered films (random orientation of particles) and S=1 for completely aligned particles along the horizontal direction x. The aspect ratio (length-to-width ratio) of the particles was varied within the range ɛ∈[1;100]. Analysis of connectivity was performed assuming a core-shell structure of the particles. The value of S affected the structure of the packings, the formation of long-range connectivity, and the behavior of the electrical conductivity. The effects can be explained by taking accounting of the competition between the particles' orientational degrees of freedom and excluded volume effects. For aligned deposition, anisotropy in the electrical conductivity was observed with the values along the alignment direction σ_{x} being larger than the values in the perpendicular direction σ_{y}. Anisotropy in the localization of the percolation threshold was also observed in finite-sized packings, but it disappeared in the limit of infinitely large systems.

3.
Phys Rev E ; 98(1-1): 012104, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110796

ABSTRACT

Numerical simulations by means of the Monte Carlo method have been performed to study the electrical properties of a two-dimensional composite filled with rodlike particles. The main goal was to study the effect of the alignment of such rods on the anisotropy of its electrical conductivity. A continuous model was used. In this model, the rods have zero-width (i.e., infinite aspect ratio) and they may intersect each other. To involve both the low conductive host matrix and highly conductive fillers (rods) in the consideration, a discretization algorithm based on the use of a supporting mesh was applied. The discretization is equivalent to the substitution of rods with the polyominoes. Once discretized, the Frank-Lobb algorithm was applied to evaluate the electrical conductivity. Our main findings are (i) the alignment of the rods essentially affects the electrical conductivity and its anisotropy, (ii) the discrete nature of computer simulations is crucial. For slightly disordered system, high electrical anisotropy was observed at small filler content, suggesting a method to enable the production of optically transparent and highly anisotropic conducting films.

SELECTION OF CITATIONS
SEARCH DETAIL
...