Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 60(6): 777-785, 2019 06.
Article in English | MEDLINE | ID: mdl-30442752

ABSTRACT

Imaging of somatostatin receptor expression is an established technique for staging of neuroendocrine neoplasia and determining the suitability of patients for peptide receptor radionuclide therapy. PET/CT using 68Ga-labeled somatostatin analogs is superior to earlier agents, but the rapid physical decay of the radionuclide poses logistic and regulatory challenges. 64Cu has attractive physical characteristics for imaging and provides a diagnostic partner for the therapeutic radionuclide 67Cu. Based on promising preclinical studies, we have performed a first-time-in-humans trial of 64Cu-MeCOSar-Tyr3-octreotate (64Cu-SARTATE) to assess its safety and ability to localize disease at early and late imaging time-points. Methods: In a prospective trial, 10 patients with known neuroendocrine neoplasia and positive for uptake on 68Ga-DOTA-octreotate (68Ga-DOTATATE) PET/CT underwent serial PET/CT imaging at 30 min, 1 h, 4 h, and 24 h after injection of 64Cu-SARTATE. Adverse reactions were recorded, and laboratory testing was performed during infusion and at 1 and 7 d after imaging. Images were analyzed for lesion and normal-organ uptake and clearance to assess lesion contrast and perform dosimetry estimates. Results:64Cu-SARTATE was well tolerated during infusion and throughout the study, with 3 patients experiencing mild infusion-related events. High lesion uptake and retention were observed at all imaging time-points. There was progressive hepatic clearance over time, providing the highest lesion-to-liver contrast at 24 h. Image quality remained high at this time. Comparison of 64Cu-SARTATE PET/CT obtained at 4 h to 68Ga-DOTATATE PET/CT obtained at 1 h indicated comparable or superior lesion detection in all patients, especially in the liver. As expected, the highest early physiologic organ uptake was in the kidneys, liver, and spleen. Conclusion:64Cu-SARTATE is safe and has excellent imaging characteristics. High late-retention in tumor and clearance from the liver suggest suitability for diagnostic studies and for prospective dosimetry for 67Cu-SARTATE peptide receptor radionuclide therapy, and the half-life of 64Cu would also facilitate good-manufacturing-practice production and distribution to sites without access to 68Ga.


Subject(s)
Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Octreotide/analogs & derivatives , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/metabolism , Receptors, Peptide/metabolism , Aged , Biological Transport , Female , Humans , Male , Middle Aged , Neuroendocrine Tumors/metabolism , Octreotide/adverse effects , Octreotide/metabolism , Prospective Studies , Radiometry , Radiopharmaceuticals/adverse effects , Safety
2.
J Nucl Med ; 45(3): 366-73, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15001675

ABSTRACT

UNLABELLED: This trial was an initial assessment of the feasibility, in vivo targeting, and biokinetics of 16beta-(18)F-fluoro-5alpha-dihydrotestosterone ((18)F-FDHT) PET in patients with metastatic prostate cancer to assess androgen receptor expression. METHODS: Seven patients with progressive clinically metastatic prostate cancer underwent (18)F-FDG and (18)F-FDHT PET scans in addition to conventional imaging methods. Three patients had their studies repeated 1 mo later, 2 while on testosterone therapy, and the third after treatment with 17-allylamino-17-demethoxygeldanamycin (17-AAG). High-pressure liquid radiochromatography was used to separate (18)F-FDHT from radiolabeled metabolites. Lesion-by-lesion comparisons between the (18)F-FDHT, (18)F-FDG, and conventional imaging methods were performed. RESULTS: Metabolism of (18)F-FDHT was rapid, with 80% conversion within 10 min to radiolabeled metabolites that circulated bound to plasma proteins. Tumor uptake was rapid and tumor retention was prolonged. Fifty-nine lesions were identified by conventional imaging methods. (18)F-FDG PET was positive in 57 of 59 lesions (97%), with an average lesion maximum standardized uptake value (SUV(max)) = 5.22. (18)F-FDHT PET was positive in 46 of 59 lesions (78%), with the average positive lesion SUV(max) = 5.28. Treatment with testosterone resulted in diminished (18)F-FDHT uptake at the tumor site. CONCLUSION: (18)F-FDHT localizes to tumor sites in patients with progressive clinically metastatic prostate cancer and may be a promising agent to analyze antigen receptors and their impact on the clinical management of prostate cancer.


Subject(s)
Dihydrotestosterone/analogs & derivatives , Dihydrotestosterone/pharmacokinetics , Fluorodeoxyglucose F18/pharmacokinetics , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Tomography, Emission-Computed/methods , Aged , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Humans , Male , Metabolic Clearance Rate , Middle Aged , Prostatic Neoplasms/diagnosis , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution , Whole-Body Counting
SELECTION OF CITATIONS
SEARCH DETAIL
...