Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(2): 023910, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648138

ABSTRACT

We show that a cryogenic amplifier composed of a homemade GaAs high-electron-mobility transistor (HEMT) is suitable for current-noise measurements in a mesoscopic device at dilution-refrigerator temperatures. The lower noise characteristics of our homemade HEMT lead to a lower noise floor in the experimental setup and enable more efficient current-noise measurement than is available with a commercial HEMT. We present the dc transport properties of the HEMT and the gain and noise characteristics of the amplifier. With the amplifier employed for current-noise measurements in a quantum point contact, we demonstrate the high resolution of the measurement setup by comparing it with that of the conventional one using a commercial HEMT.

2.
Nat Commun ; 12(1): 131, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33408325

ABSTRACT

Fractionalization is a phenomenon where an elementary excitation partitions into several pieces. This picture explains non-trivial transport through a junction of one-dimensional edge channels defined by topologically distinct quantum Hall states, for example, a hole-conjugate state at Landau-level filling factor ν = 2/3. Here we employ a time-resolved scheme to identify an elementary fractionalization process; injection of charge q from a non-interaction region into an interacting and scattering region of one-dimensional channels results in the formation of a collective excitation with charge (1-r)q by reflecting fractionalized charge rq. The fractionalization factors, r = 0.34 ± 0.03 for ν = 2/3 and r = 0.49 ± 0.03 for ν = 2, are consistent with the quantized values of 1/3 and 1/2, respectively, which are expected in the disorder dominated regime. The scheme can be used for generating and transporting fractionalized charges with a well-defined time course along a well-defined path.

3.
Rev Sci Instrum ; 92(12): 124712, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972454

ABSTRACT

We report a cryogenic transimpedance amplifier (TA) suitable for cross-correlation current-noise measurements. The TA comprises homemade high-electron-mobility transistors with high transconductance and low noise characteristics, fabricated in an AlGaAs/GaAs heterostructure. The low input-referred noise and wide frequency band of the TA lead to a high resolution in current-noise measurements. The TA's low input impedance suppresses unwanted crosstalk between two distinct currents from a sample, justifying the advantage of the TA for cross-correlation measurements. We demonstrate the high resolution of a TA-based experimental setup by measuring the shot noise generated at a quantum point contact in a quantum Hall system.

4.
Sci Rep ; 3: 1335, 2013.
Article in English | MEDLINE | ID: mdl-23443054

ABSTRACT

Increasing performance demands on photodetectors and solar cells require the development of entirely new materials and technological approaches. We report on the fabrication and optoelectronic characterization of a photodetector based on optically-thick films of dense, aligned, and macroscopically long single-wall carbon nanotubes. The photodetector exhibits broadband response from the visible to the mid-infrared under global illumination, with a response time less than 32 µs. Scanning photocurrent microscopy indicates that the signal originates at the contact edges, with an amplitude and width that can be tailored by choosing different contact metals. A theoretical model demonstrates the photothermoelectric origin of the photoresponse due to gradients in the nanotube Seebeck coefficient near the contacts. The experimental and theoretical results open a new path for the realization of optoelectronic devices based on three-dimensionally organized nanotubes.

SELECTION OF CITATIONS
SEARCH DETAIL
...