Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(25): 6190-6202, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38832839

ABSTRACT

Metal organic frameworks (MOFs) have garnered significant attention in the development of stretchable and wearable conductive hydrogels for flexible transducers. However, MOFs used in hydrogel networks have been hampered by low mechanical performance and poor dispersibility in aqueous solutions, which affect the performance of hydrogels, including low toughness, limited self-recovery, short working ranges, low conductivity, and prolonged response-recovery times. To address these shortcomings, a novel approach was adopted in which micelle co-polymerization was used for the ex situ synthesis of Zn-MOF-based hydrogels with exceptional stretchability, robust toughness, anti-fatigue properties, and commendable conductivity. This breakthrough involved the ex situ integration of Zn-MOFs into hydrophobically cross-linked polymer chains. Here the micelles of EHDDAB had two functions, first they uniformly dispersed the Zn-MOFs and secondly they dynamically cross-linked the polymer chains, profoundly influencing the mechanical characteristics of the hydrogels. The non-covalent synergistic interactions introduced by Zn-MOFs endowed the hydrogels with the capacity for high stretchability, high stress, rapid self-recovery, anti-fatigue properties, and conductivity, all achieved without external stimuli. Furthermore, hydrogels based on Zn-MOFs can serve as durable and highly sensitive flexible transducers, adept at detecting diverse mechanical deformations with swift response-recovery times and high gauge factor values. Consequently, these hydrogels can be tailored to function as wearable strain sensors capable of sensing significant human joint movements, such as wrist bending, and motions involving the wrist, fingers, and elbows. Similarly, they excel at monitoring subtle human motions, such as speech pronunciation, distinguishing between different words, as well as detecting swallowing and larynx vibrations during various activities. Beyond these applications, the hydrogels exhibit proficiency in distinguishing and reproducing various written words with reliability. The Zn-MOF-based hydrogels hold promising potential for development in electronic skin, medical monitoring, soft robotics, and flexible touch panels.


Subject(s)
Electric Conductivity , Hydrogels , Metal-Organic Frameworks , Wearable Electronic Devices , Hydrogels/chemistry , Humans , Metal-Organic Frameworks/chemistry , Zinc/chemistry , Transducers
2.
Materials (Basel) ; 16(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049066

ABSTRACT

Hybrid fillers can be produced via various methods, such as physical mixing and chemical modification. However, there is a limited number of studies on the effect of hybridisation on the mechanical performance of hybrid filler-reinforced polymer composites, especially in the context of wear performance. This study investigated the wear resistance of carbon nanotubes (CNTs)/alumina hybrid-filled phenolic composite, where two hybrid methods were used to produce the CNTs/alumina hybrid filler. The CNTs/alumina (CVD hybrid) was synthesised using the chemical vapour deposition (CVD) method, whereas the CNTs-/alumina (physically hybrid) was prepared using the ball milling method. The CNTs/alumina hybrid filler was then used as a filler in the phenolic composites. The composites were prepared using a hot mounting press and then subjected to a dry sliding wear test using a pin-on-disc (POD) tester. The results show that the composite filled with the CVD hybrid filler (HYB composite) had better wear resistance than the composite filled with physically hybrid filler (PHY composite) and pure phenolic. At 5 wt%, the HYB composite showed a 74.68% reduction in wear, while the PHY composite showed a 56.44% reduction in wear compared to pure phenolic. The HYB composite exhibited the lowest average coefficient of friction (COF) compared to the PHY composite and pure phenolic. The average COF decreased with increasing sliding speeds and applied loads. The phenolic composites' wear and average COF are in the order HYB composite < PHY composite < pure phenolic under all sliding speeds and applied loads.

3.
Int J Biol Macromol ; 232: 123476, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36731696

ABSTRACT

With the advancement in 3D bioprinting technology, cell culture methods can design 3D environments which are both, complex and physiologically relevant. The main component in 3D bioprinting, bioink, can be split into various categories depending on the criterion of categorization. Although the choice of bioink and bioprinting process will vary greatly depending on the application, general features such as material properties, biological interaction, gelation, and viscosity are always important to consider. The foundation of 3D bioprinting is the exact layer-by-layer implantation of biological elements, biochemicals, and living cells with the spatial control of the implantation of functional elements onto the biofabricated 3D structure. Three basic strategies underlie the 3D bioprinting process: autonomous self-assembly, micro tissue building blocks, and biomimicry or biomimetics. Tissue engineering can benefit from 3D bioprinting in many ways, but there are still numerous obstacles to overcome before functional tissues can be produced and used in clinical settings. A better comprehension of the physiological characteristics of bioink materials and a higher level of ability to reproduce the intricate biologically mimicked and physiologically relevant 3D structures would be a significant improvement for 3D bioprinting to overcome the limitations.


Subject(s)
Bioprinting , Tissue Scaffolds , Tissue Scaffolds/chemistry , Printing, Three-Dimensional , Tissue Engineering , Technology
4.
Polymers (Basel) ; 12(2)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050485

ABSTRACT

The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Neem and PVA stabilized particles showed high zeta potential and dispersed homogeneously in water. The stabilization process altered the shape of the particles due to plane growth along the (002) polar direction. The stabilizers acted as capping agents and initiated the one-dimensional growth. The alkyl chain groups from PVA increased the polarity of the LLDPE/3ZT-CO/PVA and played a dominant role in the water adsorption process to activate the photocatalytic activity. This was further enhanced by the homogeneous distribution of the particles and low degree of crystallinity (20.87%) of the LLDPE composites. LLDPE/3ZT-CO/PVA exhibited the highest photodegradation (93.95%), which was better than the non-stabilized particles. Therefore, the photocatalytic activity of a polymer composite can be enhanced by grafting PVA and neem onto couple oxides. The LLDPE/3ZT-CO/PVA composite was further used to treat textile effluent. The results showed the composite was able to remove dye color by 93.95% and to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 99.99%.

5.
Mater Sci Eng C Mater Biol Appl ; 99: 719-725, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889745

ABSTRACT

This study reports the influence of ZrO2/ß-TCP hybridization on the thermal, mechanical, and physical properties of polyamide 12 composites to be suited for bone replacement. Amount of 15 wt% of nano-ZrO2 along with 5,10,15,20 and 25 wt% of micro-ß-TCP was compounded with polyamide 12 via a twin-screw extruder. The hybrid ZrO2/ß-TCP filled polyamide 12 exhibited higher thermal, mechanical and physical properties in comparison to unfilled polyamide 12 at certain filler loading; which is attributed to the homogenous dispersion of ZrO2/ß-TCP fillers particle in polyamide 12 matrix. The hybrid ZrO2/ß-TCP filled PA 12 demonstrated an increment of tensile strength by up to 1%, tensile modulus of 38%, flexural strength of 15%, flexural modulus of 45%, and surface roughness value of 93%, as compared to unfilled PA 12. With enhanced thermal, mechanical and physical properties, the newly developed hybrid ZrO2/ß-TCP filled PA 12 could be potentially utilized for bone replacement.


Subject(s)
Bone and Bones/physiology , Ceramics/chemistry , Mechanical Phenomena , Nylons/chemistry , Temperature , Tissue Engineering/methods , Calcium Phosphates/chemistry , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Surface Properties , Tensile Strength , Thermogravimetry , Zirconium/chemistry
6.
Dent Mater ; 34(11): e309-e316, 2018 11.
Article in English | MEDLINE | ID: mdl-30268678

ABSTRACT

OBJECTIVE: To compare the mechanical and biological properties of newly developed hybrid ceramics filled and unfilled polyamide 12 (PA 12) for craniofacial reconstruction via a fused deposition modelling (FDM) framework. METHODS: 15wt% of zirconia (ZrO2) as well as 30, 35, and 40wt% of beta-tricalcium phosphate (ß-TCP) were compounded with PA 12, followed by the fabrication of filament feedstocks using a single screw extruder. The fabricated filament feedstocks were used to print the impact specimens. The melt flow rate, tensile properties of fabricated filament feedstocks, and 3D printed impact properties of the specimens were assessed using melt flow indexer, universal testing machine, and Izod pendulum tester, respectively. The microstructure of selected filament feedstocks and broken impact specimens were analysed using a field emission scanning electron microscope and universal testing machine. Human periodontal ligament fibroblast cells (HPdLF) were used to evaluate the cytotoxicity of the materials by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid) (MTT) assay. RESULTS: Hybrid ceramics filled PA 12 indicated sufficient flowability for FDM 3D printing. The tensile strength of hybrid ceramics filled PA 12 filament feedstocks slightly reduced as compared to unfilled PA 12. However, the tensile modulus and impact strength of hybrid ceramics filled PA 12 increased by 8%-31% and 98%-181%, respectively. A significant increase was also detected in the cell viability of the developed composites at concentrations of 12.5, 25, 50 and 100mg/ml. SIGNIFICANCE: The newly developed hybrid ceramics filled PA 12 filament feedstock with improved properties is suitable for an FDM-based 3D printer, which enables the creation of patient-specific craniofacial implant at a lower cost to serve low-income patients.


Subject(s)
Ceramics/chemistry , Fibroblasts/drug effects , Maxillofacial Prosthesis , Nylons/chemistry , Prosthesis Design/methods , Calcium Phosphates/chemistry , Calcium Phosphates/toxicity , Ceramics/toxicity , Humans , In Vitro Techniques , Nylons/toxicity , Periodontal Ligament/cytology , Printing, Three-Dimensional , Tensile Strength , Zirconium/chemistry , Zirconium/toxicity
7.
Carbohydr Polym ; 136: 1182-93, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572461

ABSTRACT

This study attempted to clarify the influence of a cross-linker, N,N-methylenebisacrylamide (MBA), and N-isopropylacrylamide (NIPAM) on the non-isothermal kinetic degradation, solid state and lifetime of hydrogels using the Flynn-Wall-Ozawa (F-W-O), Kissinger, and Coats-Redfern (C-Red) methods. The series of dual-responsive Cs-PNIPAM-MBA microgels were synthesized by soapless-emulsion free radical copolymerization in an aqueous medium at 70 °C. The thermal properties were investigated using thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) under nitrogen atmosphere. The apparent activation energy using the chosen Flynn-Wall-Ozawa and Kissinger methods showed that they fitted each other. Meanwhile, the type of solid state mechanism was determined using the Coats-Redfern method proposed for F1 (pure Cs) and F2 (Cs-PNIPAM-MBA hydrogel series) types, which comprise random nucleation with one nucleus reacting on individual particles, and random nucleation with two nuclei reacting on individual particles, respectively. On average, a higher Ea was attributed to the greater cross-linking density of the Cs hydrogel.

8.
Int J Biol Macromol ; 83: 376-84, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26597568

ABSTRACT

A new approach to design multifunctional chitosan based nanohydrogel with enhanced glucose sensitivity, stability, drug loading and release profile are reported. Two approaches were followed for functionalization of chitosan based nanohydrogel with 3-APBA via EDC and 3-APTES. The effective functionalization, structure and morphology of Chitosan based IPN respectively were confirmed by FTIR, SEM and AFM. At physiological conditions, the glucose-induced volume phase transition and release profile of the model drug Alizarin Red with 1,2-diol structure (comparative to insulin as a drug as well as a dye for bio separation) were studied at various glucose concentrations, pH and ionic strengths. The results suggested a new concept for diabetes treatment and diols sensitivity in view of their potential hi-tech applications in self-regulated on-off response to the treatment (drug delivery and bio separation concurrently).


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Glucose/chemistry , Hydrogels/chemistry , Nanostructures/chemistry , Anthraquinones/chemistry , Drug Design , Drug Liberation , Hydrogen-Ion Concentration , Osmolar Concentration , Propylamines , Silanes/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...