Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 54(8): 2411-2421, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28740299

ABSTRACT

Diabetic retinopathy (DR) is a major concern for blindness all over the world. Diabetic retinopathy is associated with thickening of basement membrane, retinal thinning, retinal detachment, and pericyte death. Advanced glycation end products (AGEs) mediate the progression of DR by stimulating the expression of RAGE and VEGF which subsequently damages the blood-retinal barrier. Employing a set of in vitro protein glycation systems, earlier we demonstrated antiglycating potential of ellagic acid (EA). In this study, we evaluated the efficacy of EA to prevent in vivo accumulation of AGE and to ameliorate retinal changes in diabetic rats. Streptozotocin-induced diabetic rats were fed either with 0.2 or 2% EA in the diet for 12 weeks. Effect of EA on retinal function was assessed with electroretinogram (ERG). At the end of the experiment, rats were scarified and retina was collected. Histology was carried out with H&E staining and immunohistochemistry. Formation of AGE product (CML) and activation of RAGE was analyzed by immunoblotting and immunohistochemistry. Expression of GFAP, VEGF, Bax and HIF-1α was assessed by qRT-PCR and immunoblotting. Dietary supplementation of EA to diabetic rats resulted in: (1) inhibition of accumulation of CML and activation of RAGE in retina, (2) attenuation of expression of GFAP, VEGF, and HIF-1α in retina, (3) attenuation of cell death by reducing proapoptic mediator Bax and (4) amelioration of retinal thickness and function. In conclusion, EA attenuated the retinal abnormalities including angiogenesis, hypoxia and cell death by inhibiting AGE-RAGE mediated cellular events.

2.
Br J Nutr ; 107(7): 941-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21864418

ABSTRACT

Formation of advanced glycation end products (AGE) plays a key role in the several pathophysiologies associated with ageing and diabetes, such as arthritis, atherosclerosis, chronic renal insufficiency, Alzheimer's disease, nephropathy, neuropathy and cataract. This raises the possibility of inhibition of AGE formation as one of the approaches to prevent or arrest the progression of diabetic complications. Previously, we have reported that some common dietary sources such as fruits, vegetables, herbs and spices have the potential to inhibit AGE formation. Flavonoids are abundantly found in fruits, vegetables, herbs and spices, and rutin is one of the commonly found dietary flavonols. In the present study, we have demonstrated the antiglycating potential and mechanism of action of rutin using goat eye lens proteins as model proteins. Under in vitro conditions, rutin inhibited glycation as assessed by SDS-PAGE, AGE-fluorescence, boronate affinity chromatography and immunodetection of specific AGE. Further, we provided insight into the mechanism of inhibition of protein glycation that rutin not only scavenges free-radicals directly but also chelates the metal ions by forming complexes with them and thereby partly inhibiting post-Amadori formation. These findings indicate the potential of rutin to prevent and/or inhibit protein glycation and the prospects for controlling AGE-mediated diabetic pathological conditions in vivo.


Subject(s)
Crystallins/drug effects , Crystallins/metabolism , Glycation End Products, Advanced/antagonists & inhibitors , Glycation End Products, Advanced/biosynthesis , Rutin/pharmacology , Animals , Chelating Agents/pharmacology , Crystallins/chemistry , Diabetes Complications/prevention & control , Free Radical Scavengers/pharmacology , Glycosylation/drug effects , Goats , Guanidines/pharmacology , Humans , In Vitro Techniques , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...