Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(43): E8996-E9005, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29073096

ABSTRACT

Tissue regeneration depends on the timely activation of adult stem cells. In skeletal muscle, the adult stem cells maintain a quiescent state and proliferate upon injury. We show that muscle stem cells (MuSCs) use direct translational repression to maintain the quiescent state. High-resolution single-molecule and single-cell analyses demonstrate that quiescent MuSCs express high levels of Myogenic Differentiation 1 (MyoD) transcript in vivo, whereas MyoD protein is absent. RNA pulldowns and costainings show that MyoD mRNA interacts with Staufen1, a potent regulator of mRNA localization, translation, and stability. Staufen1 prevents MyoD translation through its interaction with the MyoD 3'-UTR. MuSCs from Staufen1 heterozygous (Staufen1+/-) mice have increased MyoD protein expression, exit quiescence, and begin proliferating. Conversely, blocking MyoD translation maintains the quiescent phenotype. Collectively, our data show that MuSCs express MyoD mRNA and actively repress its translation to remain quiescent yet primed for activation.


Subject(s)
Gene Expression Regulation/physiology , MyoD Protein/metabolism , RNA-Binding Proteins/metabolism , Stem Cells/physiology , Animals , Cell Differentiation , Mice , Muscle Cells/physiology , MyoD Protein/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
2.
Nat Commun ; 8: 15613, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28631758

ABSTRACT

Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Exercise/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/transplantation , Stem Cell Transplantation/methods , Tissue Engineering/methods , Aged , Animals , Bioreactors , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Middle Aged , Muscle, Skeletal/pathology , Regeneration , Tissue Scaffolds
3.
J Neurophysiol ; 112(2): 233-48, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24740854

ABSTRACT

Whisker deflection evokes sparse, low-probability spiking among L2/3 pyramidal cells in rodent somatosensory cortex (S1), with spiking distributed nonuniformly between more and less responsive cells. The cellular and local circuit factors that determine whisker responsiveness across neurons are unclear. To identify these factors, we used two-photon calcium imaging and loose-seal recording to identify more and less responsive L2/3 neurons in S1 slices in vitro, during feedforward recruitment of the L2/3 network by L4 stimulation. We observed a broad gradient of spike recruitment thresholds within local L2/3 populations, with low- and high-threshold cells intermixed. This recruitment gradient was significantly correlated across different L4 stimulation sites, and between L4-evoked and whisker-evoked responses in vivo, indicating that a substantial component of responsiveness is independent of tuning to specific feedforward inputs. Low- and high-threshold L2/3 pyramidal cells differed in L4-evoked excitatory synaptic conductance and intrinsic excitability, including spike threshold and the likelihood of doublet spike bursts. A gradient of intrinsic excitability was observed across neurons. Cells that spiked most readily to L4 stimulation received the most synaptic excitation but had the lowest intrinsic excitability. Low- and high-threshold cells did not differ in dendritic morphology, passive membrane properties, or L4-evoked inhibitory conductance. Thus multiple gradients of physiological properties exist across L2/3 pyramidal cells, with excitatory synaptic input strength best predicting overall spiking responsiveness during network recruitment.


Subject(s)
Evoked Potentials, Somatosensory , Pyramidal Cells/physiology , Somatosensory Cortex/physiology , Vibrissae/innervation , Animals , Calcium Signaling , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Mice , Mice, Inbred C57BL , Pyramidal Cells/metabolism , Rats , Rats, Long-Evans , Sensory Thresholds , Somatosensory Cortex/cytology , Vibrissae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...