Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Exp Biol ; 227(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38099598

ABSTRACT

The occurrence of regeneration of the organs involved in respiratory gas exchange amongst vertebrates is heterogeneous. In some species of amphibians and fishes, the gills regenerate completely following resection or amputation, whereas in mammals, only partial, facultative regeneration of lung tissue occurs following injury. Given the homology between gills and lungs, the capacity of gill regeneration in aquatic species is of major interest in determining the underlying molecular or signalling pathways involved in respiratory organ regeneration. In the present study, we used adult zebrafish (Danio rerio) to characterize signalling pathways involved in the early stages of gill regeneration. Regeneration of the gills was induced by resection of gill filaments and observed over a period of up to 10 days. We screened for the effects on regeneration of the drugs SU5402, dorsomorphin and LY411575, which inhibit FGF, BMP or Notch signalling pathways, respectively. Exposure to each drug for 5 days significantly reduced regrowth of filament tips in regenerating tissue, compared with unresected controls. In separate experiments under normal conditions of regeneration, we used reverse transcription quantitative PCR and observed an increased expression of genes encoding for the bone morphogenetic factor, Bmp2b, fibroblast growth factor, Fgf8a, a transcriptional regulator (Her6) involved in Notch signalling, and Sonic Hedgehog (Shha), in regenerating gills at 10 day post-resection, compared with unresected controls. In situ hybridization confirmed that all four genes were expressed in regenerating gill tissue. This study implicates BMP, FGF, Notch and Shh signalling in gill regeneration in zebrafish.


Subject(s)
Gills , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Gills/metabolism , Hedgehog Proteins , Signal Transduction/genetics , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Zebrafish Proteins/genetics , Mammals/metabolism
2.
Dev Dyn ; 251(4): 645-661, 2022 04.
Article in English | MEDLINE | ID: mdl-34599606

ABSTRACT

BACKGROUND: Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene. RESULTS: Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf. Cardiac structure and function analyses between 1 and 7 dpf show mild and transient defects in the lmna mutants compared to wild type (WT). Quantitative RT-PCR analysis of genes implicated in striated muscle laminopathies show a decrease in jun and nfκb2 expression in 7 dpf homozygous lmna mutants compared to WT. Homozygous lmna mutants have a 1.26-fold protein increase in activated Erk 1/2, kinases associated with striated muscle laminopathies, compared to WT at 7 dpf. Activated Protein Kinase C alpha (Pkc α), a kinase that interacts with lamin A/C and Erk 1/2, is also upregulated in 7 dpf homozygous lmna mutants compared to WT. CONCLUSIONS: This study presents an animal model of skeletal muscle laminopathy where heterozygous and homozygous lmna mutants exhibit prominent skeletal muscle abnormalities during the first week of development. Furthermore, this is the first animal model that potentially implicates Pkc α in muscular laminopathies.


Subject(s)
Lamin Type A , Laminopathies , Animals , CRISPR-Cas Systems , Disease Models, Animal , Lamin Type A/genetics , Lamin Type A/metabolism , Muscle, Skeletal , Mutation , Zebrafish/genetics , Zebrafish/metabolism
3.
Cells ; 9(11)2020 10 31.
Article in English | MEDLINE | ID: mdl-33142761

ABSTRACT

Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α's involvement in muscular laminopathies, PKC-α's localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.


Subject(s)
Lamin Type A/genetics , Lamin Type A/metabolism , Laminopathies/genetics , Laminopathies/metabolism , Protein Kinase C-alpha/metabolism , Amino Acid Sequence , Animals , Cell Line , Humans , MAP Kinase Signaling System , Mice , Muscle, Striated/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Mutation , Myoblasts/metabolism , Rats , Signal Transduction
4.
Dev Dyn ; 249(2): 187-198, 2020 02.
Article in English | MEDLINE | ID: mdl-31487071

ABSTRACT

BACKGROUND: Matrix metalloproteinases 13 (MMP13) is a potent endopeptidase that regulate cell growth, migration, and extracellular matrix remodeling. However, its role in fin regeneration remains unclear. RESULTS: mmp13a expression is strongly upregulated during blastema formation and persists in the distal blastema. mmp13a knockdown via morpholino electroporation impairs regenerative outgrowth by decreasing cell proliferation, which correlates with a downregulation of fgf10a and sall4 expression in the blastema. Laminin distribution in the basement membrane is also affected in mmp13a MO-injected rays. Another impact of mmp13a knockdown is observed in the skeletal elements of the fin rays. Expression of two main components of actinotrichia, Collagen II and Actinodin 1 is highly reduced in mmp13a MO-injected rays leading to highly disorganized actinotrichia pattern. Inhibition of mmp13a strongly affects bone formation as shown by a reduction of Zns5 and sp7 expression and of bone matrix mineralization in rays. These defects are accompanied by a significant increase in apoptosis in mmp13a MO-injected fin regenerates. CONCLUSION: Defects of expression of this multifunctional proteinase drastically affects osteoblast differentiation, bone and actinotrichia formation as well as Laminin distribution in the basement membrane of the fin regenerate, suggesting the important role of Mmp13 during the regenerative process.


Subject(s)
Osteoblasts/cytology , Osteoblasts/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animal Fins/cytology , Animal Fins/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Laminin/metabolism , Zebrafish Proteins/genetics
5.
PLoS One ; 14(5): e0216370, 2019.
Article in English | MEDLINE | ID: mdl-31048899

ABSTRACT

Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood.


Subject(s)
Animal Fins/physiology , Embryo, Nonmammalian/embryology , Embryonic Development/physiology , Gene Expression Regulation, Developmental/physiology , Regeneration/physiology , Zebrafish Proteins/biosynthesis , Zebrafish/embryology , Animals , Embryo, Nonmammalian/cytology , Enhancer Elements, Genetic/physiology , Exons/physiology , Introns/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics
6.
Cells ; 8(4)2019 03 29.
Article in English | MEDLINE | ID: mdl-30934932

ABSTRACT

The lamin A/C (LMNA) gene codes for nuclear intermediate filaments constitutive of the nuclear lamina. LMNA has 12 exons and alternative splicing of exon 10 results in two major isoforms-lamins A and C. Mutations found throughout the LMNA gene cause a group of diseases collectively known as laminopathies, of which the type, diversity, penetrance and severity of phenotypes can vary from one individual to the other, even between individuals carrying the same mutation. The majority of the laminopathies affect cardiac and/or skeletal muscles. The underlying molecular mechanisms contributing to such tissue-specific phenotypes caused by mutations in a ubiquitously expressed gene are not yet well elucidated. This review will explore the different phenotypes observed in established models of striated muscle laminopathies and their respective contributions to advancing our understanding of cardiac and skeletal muscle-related laminopathies. Potential future directions for developing effective treatments for patients with lamin A/C mutation-associated cardiac and/or skeletal muscle conditions will be discussed.


Subject(s)
Lamins/genetics , Models, Biological , Muscle, Striated/pathology , Muscular Diseases/pathology , Animals , Disease Models, Animal , Humans , Phenotype
7.
Dev Cell ; 46(3): 253-254, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30086298

ABSTRACT

Peripheral axons of sensory neurons innervate skin cells to form a functional sensory organ. In this issue of Developmental Cell, Rasmussen et al. (2018) demonstrate that scale formation is essential for the development and regeneration of zebrafish sensory axons and vasculature.


Subject(s)
Axons , Zebrafish , Animals , Nerve Regeneration , Sensory Receptor Cells , Skin , Zebrafish Proteins
8.
Development ; 145(11)2018 06 11.
Article in English | MEDLINE | ID: mdl-29752384

ABSTRACT

During zebrafish fin regeneration, blastema cells lining the epidermis differentiate into osteoblasts and joint cells to reconstruct the segmented bony rays. We show that osteoblasts and joint cells originate from a common cell lineage, but are committed to different cell fates. Pre-osteoblasts expressing runx2a/b commit to the osteoblast lineage upon expressing sp7, whereas the strong upregulation of hoxa13a correlates with a commitment to a joint cell type. In the distal regenerate, hoxa13a, evx1 and pthlha are sequentially upregulated at regular intervals to define the newly identified presumptive joint cells. Presumptive joint cells mature into joint-forming cells, a distinct cell cluster that maintains the expression of these factors. Analysis of evx1 null mutants reveals that evx1 is acting upstream of pthlha and downstream of or in parallel with hoxa13a Calcineurin activity, potentially through the inhibition of retinoic acid signaling, regulates evx1, pthlha and hoxa13a expression during joint formation. Furthermore, retinoic acid treatment induces osteoblast differentiation in mature joint cells, leading to ectopic bone deposition in joint regions. Overall, our data reveal a novel regulatory pathway essential for joint formation in the regenerating fin.


Subject(s)
Animal Fins/growth & development , Calcineurin/metabolism , Joints/growth & development , Regeneration/physiology , Tretinoin/pharmacology , Zebrafish/physiology , Animals , Cell Differentiation/physiology , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Osteoblasts/cytology , Parathyroid Hormone-Related Protein/biosynthesis , Parathyroid Hormone-Related Protein/genetics , Sp7 Transcription Factor/biosynthesis , Sp7 Transcription Factor/genetics , Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish Proteins/biosynthesis , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
PLoS One ; 13(2): e0192500, 2018.
Article in English | MEDLINE | ID: mdl-29420592

ABSTRACT

The evolution of the tetrapod limb involved an expansion and elaboration of the endoskeletal elements, while the fish fin rays were lost. Loss of fin-specific genes, and regulatory changes in key appendicular patterning genes have been identified as mechanisms of limb evolution, however their contributions to cellular organization and tissue differences between fins and limbs remains poorly understood. During early larval fin development, hoxa13a/hoxd13a-expressing fin fold mesenchyme migrate through the median and pectoral fin along actinotrichia fibrils, non-calcified skeletal elements crucial for supporting the fin fold. Fin fold mesenchyme migration defects have previously been proposed as a mechanism of fin dermal bone loss during tetrapod evolution as it has been shown they contribute directly to the fin ray osteoblast population. Using the nitroreductase/metronidazole system, we genetically ablated a subset of hoxa13a/hoxd13a-expressing fin fold mesenchyme to assess its contributions to fin development. Following the ablation of fin fold mesenchyme in larvae, the actinotrichia are unable to remain rigid and the median and pectoral fin folds collapse, resulting in a reduced fin fold size. The remaining cells following ablation are unable to migrate and show decreased actinodin1 mesenchymal reporter activity. Actinodin proteins are crucial structural component of the actinotrichia. Additionally, we show a decrease in hoxa13a, hoxd13a, fgf10a and altered shha, and ptch2 expression during larval fin development. A continuous treatment of metronidazole leads to fin ray defects at 30dpf. Fewer rays are present compared to stage-matched control larvae, and these rays are shorter and less defined. These results suggest the targeted hoxa13a/hoxd13a-expressing mesenchyme contribute to their own successful migration through their contributions to actinotrichia. Furthermore, due to their fate as fin ray osteoblasts, we propose their initial ablation, and subsequent disorganization produces truncated fin dermal bone elements during late larval stages.


Subject(s)
Animal Fins/growth & development , Zebrafish/growth & development , Animals , Gene Expression Regulation, Developmental , Larva/drug effects , Mesoderm/growth & development , Metronidazole/pharmacology , Zebrafish/genetics
10.
Int J Dev Biol ; 62(11-12): 705-716, 2018.
Article in English | MEDLINE | ID: mdl-30604840

ABSTRACT

The evolution of tetrapod limbs from paired fish fins comprised major changes to the appendicular dermal and endochondral skeleton. Fish fin rays were lost, and the endochondral bone was modified and elaborated to form three distinct segments common to all tetrapod limbs: the stylopod, the zeugopod and the autopod. Identifying the molecular mechanisms that contributed to these morphological changes presents a unique insight into our own evolutionary history. This review first summarizes previously identified cis-acting regulatory elements for the 5'HoxA/D genes and actinodin1 that were tested using transgenic swap experiments between fish and tetrapods. Conserved regulatory networks provide evidence for a deep homology between distal fin structures and the autopod, while diverging regulatory strategies highlight potential molecular mechanisms that contributed to the fin-to-limb transition. Next, we summarize studies that performed functional analysis to recapitulate fish-tetrapod diverging regulatory strategies and then discuss their potential morphological consequences during limb evolution. Finally, we also discuss here some of the advantages and disadvantages of using zebrafish to study molecular and morphological changes during the fin-to-limb transition.


Subject(s)
Animal Fins/physiology , Biological Evolution , Extremities/physiology , Gene Expression Regulation , Genes, Homeobox , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Evolution, Molecular , Gene Expression Regulation, Developmental , Regulatory Elements, Transcriptional
11.
Nature ; 539(7627): 89-92, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27706137

ABSTRACT

The fin-to-limb transition represents one of the major vertebrate morphological innovations associated with the transition from aquatic to terrestrial life and is an attractive model for gaining insights into the mechanisms of morphological diversity between species. One of the characteristic features of limbs is the presence of digits at their extremities. Although most tetrapods have limbs with five digits (pentadactyl limbs), palaeontological data indicate that digits emerged in lobed fins of early tetrapods, which were polydactylous. How the transition to pentadactyl limbs occurred remains unclear. Here we show that the mutually exclusive expression of the mouse genes Hoxa11 and Hoxa13, which were previously proposed to be involved in the origin of the tetrapod limb, is required for the pentadactyl state. We further demonstrate that the exclusion of Hoxa11 from the Hoxa13 domain relies on an enhancer that drives antisense transcription at the Hoxa11 locus after activation by HOXA13 and HOXD13. Finally, we show that the enhancer that drives antisense transcription of the mouse Hoxa11 gene is absent in zebrafish, which, together with the largely overlapping expression of hoxa11 and hoxa13 genes reported in fish, suggests that this enhancer emerged in the course of the fin-to-limb transition. On the basis of the polydactyly that we observed after expression of Hoxa11 in distal limbs, we propose that the evolution of Hoxa11 regulation contributed to the transition from polydactyl limbs in stem-group tetrapods to pentadactyl limbs in extant tetrapods.


Subject(s)
Biological Evolution , Extremities/anatomy & histology , Homeodomain Proteins/metabolism , Vertebrates/anatomy & histology , Vertebrates/genetics , Animal Fins/anatomy & histology , Animal Fins/metabolism , Animals , Enhancer Elements, Genetic/genetics , Extinction, Biological , Female , Introns/genetics , Mice , RNA, Antisense/biosynthesis , RNA, Antisense/genetics , Transcription Factors/metabolism , Transcription, Genetic , Zebrafish/anatomy & histology , Zebrafish/genetics
12.
Zebrafish ; 13 Suppl 1: S153-63, 2016 07.
Article in English | MEDLINE | ID: mdl-27248438

ABSTRACT

The zebrafish model system is helping researchers improve the health and welfare of people and animals and has become indispensable for advancing biomedical research. As genetic engineering is both resource intensive and time-consuming, sharing successfully developed genetically modified zebrafish lines throughout the international community is critical to research efficiency and to maximizing the millions of dollars in research funding. New restrictions on importation of zebrafish into Canada based on putative susceptibility to infection by the spring viremia of carp virus (SVCV) have been imposed on the scientific community. In this commentary, we review the disease profile of SVCV in fish, discuss the findings of the Canadian government's scientific assessment, how the interpretations of their assessment differ from that of the Canadian research community, and describe the negative impact of these regulations on the Canadian research community and public as it pertains to protecting the health of Canadians.


Subject(s)
Commerce/legislation & jurisprudence , Fish Diseases/prevention & control , Fish Diseases/transmission , Government Regulation , Rhabdoviridae Infections/veterinary , Zebrafish , Animals , Canada , Fish Diseases/virology , Rhabdoviridae/physiology , Rhabdoviridae Infections/prevention & control , Rhabdoviridae Infections/transmission , Rhabdoviridae Infections/virology
14.
Development ; 140(21): 4323-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24089472

ABSTRACT

Sexually dimorphic breeding tubercles (BTs) are keratinized epidermal structures that form clusters on the dorsal surface of the anterior rays of zebrafish male pectoral fins. BTs appear during sexual maturation and are maintained through regular shedding and renewal of the keratinized surface. Following pectoral fin amputation, BT clusters regenerate after the initiation of revascularization, but concomitantly with a second wave of angiogenesis. This second wave of regeneration forms a web-like blood vessel network that penetrates the supportive epidermis of BTs. Upon analyzing the effects of sex steroids and their inhibitors, we show that androgens induce and estrogens inhibit BT cluster formation in intact and regenerating pectoral fins. Androgen-induced BT formation in females is accompanied by the formation of a male-like blood vessel network. Treatment of females with both androgens and an angiogenesis inhibitor results in the formation of undersized BT clusters when compared with females treated with androgens alone. Overall, the growth and regeneration of large BTs requires a hormonal stimulus and the presence of an additional blood vessel network that is naturally found in males.


Subject(s)
Androgens/metabolism , Animal Fins/physiology , Neovascularization, Physiologic/physiology , Regeneration/physiology , Sex Characteristics , Zebrafish/physiology , Animal Fins/blood supply , Animal Fins/metabolism , Animals , DNA Primers/genetics , Epidermal Cells , Female , Histocytochemistry , Keratinocytes/metabolism , Male , Microscopy, Fluorescence , Real-Time Polymerase Chain Reaction
15.
Orphanet J Rare Dis ; 8: 62, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23621916

ABSTRACT

BACKGROUND: We recently described a novel autosomal recessive neurodevelopmental disorder with intellectual disability in four patients from two related Hutterite families. Identity-by-descent mapping localized the gene to a 5.1 Mb region at chromosome 16p13.3 containing more than 170 known or predicted genes. The objective of this study was to identify the causative gene for this rare disorder. METHODS AND RESULTS: Candidate gene sequencing followed by exome sequencing identified a homozygous missense mutation p.Gly46Arg, in THOC6. No other potentially causative coding variants were present within the critical region on chromosome 16. THOC6 is a member of the THO/TREX complex which is involved in coordinating mRNA processing with mRNA export from the nucleus. In situ hybridization showed that thoc6 is highly expressed in the midbrain and eyes. Cellular localization studies demonstrated that wild-type THOC6 is present within the nucleus as is the case for other THO complex proteins. However, mutant THOC6 was predominantly localized to the cytoplasm, suggesting that the mutant protein is unable to carry out its normal function. siRNA knockdown of THOC6 revealed increased apoptosis in cultured cells. CONCLUSION: Our findings associate a missense mutation in THOC6 with intellectual disability, suggesting the THO/TREX complex plays an important role in neurodevelopment.


Subject(s)
Intellectual Disability/genetics , Mutation, Missense/genetics , Animals , Exome/genetics , Female , Humans , In Situ Hybridization , Male , Zebrafish
16.
Dev Neurobiol ; 73(7): 543-58, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23447551

ABSTRACT

We characterized the expression of sall4, a gene encoding a zinc finger transcription factor involved in the maintenance of embryonic stem cells, in taste buds of zebrafish (Danio rerio). Using an enhancer trap line (ET5), we detected enhanced green fluorescent protein (EGFP) in developing and adult transgenic zebrafish in regions containing taste buds: the lips, branchial arches, and the nasal and maxillary barbels. Localization of EGFP to taste cells of the branchial arches and lips was confirmed by co-immunolabeling with antibodies against calretinin and serotonin, and a zebrafish-derived neuronal marker (zn-12). Transgenic insertion of the ET construct into the zebrafish genome was evaluated and mapped to chromosome 23 in proximity (i.e. 23 kb) to the sall4 gene. In situ hybridization and expression analysis between 24 and 96 h post-fertilization (hpf) demonstrated that transgenic egfp expression in ET5 zebrafish was correlated with the spatial and temporal pattern of expression of sall4 in the wild-type. Expression was first observed in the central nervous system and branchial arches at 24 hpf. At 48 hpf, sall4 and egfp expression was observed in taste bud primordia surrounding the mouth and branchial arches. At 72 and 96 hpf, expression was detected in the upper and lower lips and branchial arches. Double fluorescence in situ hybridization at 3 and 10 dpf confirmed colocalization of sall4 and egfp in the lips and branchial arches. These studies reveal sall4 expression in chemosensory cells and implicate this transcription factor in the development and renewal of taste epithelia in zebrafish.


Subject(s)
Gene Expression Regulation, Developmental , Taste Buds/embryology , Taste Buds/metabolism , Transcription Factors/genetics , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , Epithelium/embryology , Epithelium/innervation , Epithelium/metabolism , Transcription Factors/biosynthesis , Zebrafish , Zebrafish Proteins/biosynthesis
17.
Dev Biol ; 365(2): 424-33, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22445510

ABSTRACT

The zebrafish fin is an excellent system to study the mechanisms of dermal bone patterning. Fin rays are segmented structures that form successive bifurcations both during ontogenesis and regeneration. Previous studies showed that sonic hedgehog (shha) may regulate regenerative bone patterning based on its expression pattern and functional analysis. The present study investigates the role of the shha-expressing cells in the patterning of fin ray branches. The shha expression domain in the basal epidermis of each fin ray splits into two prior to ray bifurcation. In addition, the osteoblast proliferation profile follows the dynamic expression pattern of shha. A zebrafish transgenic line, 2.4shh:gfpABC#15, in which GFP expression recapitulates the endogenous expression of shha, was used to specifically ablate shha-expressing cells with a laser beam. Such ablations lead to a delay in the sequence of events leading to ray bifurcation without affecting the overall growth of the fin ray. These results suggest that shha-expressing cells direct localized osteoblast proliferation and thus regulate branching morphogenesis. This study reveals the fin ray as a new accessible system to investigate epithelial-mesenchymal interactions leading to organ branching.


Subject(s)
Animal Fins/embryology , Body Patterning/physiology , Hedgehog Proteins/physiology , Regeneration , Zebrafish Proteins/physiology , Zebrafish/embryology , Animal Fins/cytology , Animal Fins/radiation effects , Animals , Animals, Genetically Modified , Body Patterning/radiation effects , Cells, Cultured , Hedgehog Proteins/antagonists & inhibitors , Lasers , Zebrafish/metabolism , Zebrafish Proteins/antagonists & inhibitors
18.
Development ; 139(6): 1188-97, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22318227

ABSTRACT

The fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments. Experimental observations on fin ray growth, regeneration and joint formation have been described, but no unified theory has yet been put forward to explain how growth and joint patterns are controlled. We present a model for the control of fin ray growth during development and regeneration, integrated with a model for joint pattern formation, which is in agreement with published, as well as new, experimental data. We propose that fin ray growth and joint patterning are coordinated through the interaction of three morphogens. When the model is extended to incorporate multiple rays across the fin, it also accounts for how the caudal fin acquires its shape during development, and regains its correct size and shape following amputation.


Subject(s)
Animal Fins/growth & development , Animal Fins/physiology , Regeneration , Zebrafish/growth & development , Zebrafish/physiology , Animal Fins/embryology , Animals , Bone Development , Bone and Bones/embryology , Computer Simulation , Models, Biological , Morphogenesis , Osteogenesis , Zebrafish/embryology , Zebrafish Proteins/metabolism
19.
Am J Hum Genet ; 89(6): 713-30, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22152675

ABSTRACT

Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes.


Subject(s)
Cerebellar Diseases/genetics , Cilia/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Mutation , Abnormalities, Multiple , Adult , Animals , Bardet-Biedl Syndrome/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/ultrastructure , Case-Control Studies , Cell Line , Cerebellum/abnormalities , Child , Child, Preschool , Chromosome Mapping , Cilia/metabolism , Female , Gene Expression , Gene Knockdown Techniques , Gene Knockout Techniques , Genetic Association Studies , Haplotypes , Humans , Infant , Infant, Newborn , Male , Membrane Proteins/metabolism , Mice , Microscopy, Electron, Transmission , Multiprotein Complexes/metabolism , Polymorphism, Single Nucleotide , Retina/abnormalities , Sequence Analysis, DNA , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/embryology , Zebrafish/genetics
20.
PLoS One ; 5(7): e11438, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20625388

ABSTRACT

BACKGROUND: In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration. METHODOLOGY/PRINCIPAL FINDINGS: Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)). In vitro, unprocessed proVEGF-C failed to activate its signaling proteins Akt and ERK and to induce cell proliferation. In vivo, following caudal fin amputation, the induction of VEGF-C, Furin and PC5 expression occurs as early as 2 days post-amputation (dpa) with a maximum levels at 4-7 dpa. Using immunofluorescence staining we localized high expression of VEGF-C and the convertases Furin and PC5 surrounding the apical growth zone of the regenerating fin. While expression of wild-type proVEGF-C in this area had no effect, unprocessed proVEGF-C inhibited fin regeneration. CONCLUSIONS/SIGNIFICANCES: Taken together, these data indicate that zebrafish fin regeneration is associated with up-regulation of VEGF-C and the convertases Furin and PC5 and highlight the inhibitory effect of unprocessed proVEGF-C on fin regeneration.


Subject(s)
Regeneration/physiology , Vascular Endothelial Growth Factor C/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Zebrafish/physiology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Animals, Genetically Modified/physiology , Blotting, Western , Cell Proliferation , Cells, Cultured , Furin/genetics , Furin/metabolism , Phosphorylation , Polymerase Chain Reaction , Proprotein Convertase 5/genetics , Proprotein Convertase 5/metabolism , Regeneration/genetics , Tyrosine/metabolism , Vascular Endothelial Growth Factor C/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...