Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 727: 150317, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38959733

ABSTRACT

Abnormalities in osteoclastic generation or activity disrupt bone homeostasis and are highly involved in many pathologic bone-related diseases, including rheumatoid arthritis, osteopetrosis, and osteoporosis. Control of osteoclast-mediated bone resorption is crucial for treating these bone diseases. However, the mechanisms of control of osteoclastogenesis are incompletely understood. In this study, we identified that inosine 5'-monophosphate dehydrogenase type II (Impdh2) positively regulates bone resorption. By histomorphometric analysis, Impdh2 deletion in mouse myeloid lineage cells (Impdh2LysM-/- mice) showed a high bone mass due to the reduced osteoclast number. qPCR and western blotting results demonstrated that the expression of osteoclast marker genes, including Nfatc1, Ctsk, Calcr, Acp5, Dcstamp, and Atp6v0d2, was significantly decreased in the Impdh2LysM-/- mice. Furthermore, the Impdh inhibitor MPA treatment inhibited osteoclast differentiation and induced Impdh2-cytoophidia formation. The ability of osteoclast differentiation was recovered after MPA deprivation. Interestingly, genome-wide analysis revealed that the osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation, were impaired in the Impdh2LysM-/- mice. Moreover, the deletion of Impdh2 alleviated ovariectomy-induced bone loss. In conclusion, our findings revealed a previously unrecognized function of Impdh2, suggesting that Impdh2-mediated mechanisms represent therapeutic targets for osteolytic diseases.

2.
Biochem Pharmacol ; 226: 116391, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914317

ABSTRACT

Inhibition of excessive osteoclastic activity is an efficient therapeutic strategy for many bone diseases induced by increased bone resorption, such as osteoporosis. BMS-582949, a clinical p38α inhibitor, is a promising drug in Phase II studies for treating rheumatoid arthritis. However, its function on bone resorption is largely unknown. In this study, we find that BMS-582949 represses RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, BMS-582949 inhibits osteoclastic F-actin ring formation and osteoclast-specific gene expression. Mechanically, BMS-582949 treatment attenuates RANKL-mediated osteoclastogenesis through mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) signaling pathways without disturbing nuclear factor-κB (NF-κB) signaling. Interestingly, BMS-582949 impairs osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation (OXPHOS). Furthermore, BMS-582949 administration prevents bone loss in ovariectomized mouse mode by inhibiting both bone resorption and bone formation in vivo. Taken together, these findings indicate that BMS-582949 may be a potential and effective drug for the therapy of osteolytic diseases.

3.
Phytomedicine ; 129: 155559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579642

ABSTRACT

BACKGROUND: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. PURPOSE: We aim to search for natural compound that may suppress osteoclast formation and function. STUDY DESIGN: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo. METHODS: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. RESULTS: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. CONCLUSION: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.


Subject(s)
Benzylisoquinolines , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Osteogenesis , Ovariectomy , RANK Ligand , Reactive Oxygen Species , Animals , Benzylisoquinolines/pharmacology , Female , RANK Ligand/metabolism , Mice , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Osteogenesis/drug effects , Osteoclasts/drug effects , NFATC Transcription Factors/metabolism , Disease Models, Animal , Bone Resorption/drug therapy , Mice, Inbred C57BL , RAW 264.7 Cells , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Humans , Tetrahydroisoquinolines
4.
Chem Biol Interact ; 394: 110968, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522564

ABSTRACT

Bone metastases caused by breast cancer pose a major challenge to the successful treatment of breast cancer patients. Many researchers have suggested that herbal medicines are extremely effective at preventing and treating cancer-associated osteolysis. Previous studies have revealed that Morusin (MOR) is cytotoxic to many cancer cells ex vivo. Nevertheless, how MOR contributes to osteolysis induced by breast cancer is still unknown, and the potential mechanism of action against osteolysis is worthy of further study. The protective effect and molecular mechanism of MOR in inhibiting breast cancer cell-induced osteolysis were verified by experiments and network pharmacology. Cell function was assessed by cell proliferation, osteoclast (OC) formation, bone resorption, and phalloidin staining. Tumour growth was examined by micro-CT scanning in vivo. To identify potential MOR treatments, the active ingredient-target pathway of breast cancer was screened using network pharmacology and molecular docking approaches. This study is the first to report that MOR can prevent osteolysis induced by breast cancer cells. Specifically, our results revealed that MOR inhibits RANKL-induced osteoclastogenesis and restrains the proliferation, invasion and migration of MDA-MB-231 breast cells through restraining the PI3K/AKT/MTOR signalling pathway. Notably, MOR prevented bone loss caused by breast cancer cell-induced osteolysis in vivo, indicating that MOR inhibited the development of OCs and the resorption of bone, which are essential for cancer cell-associated bone distraction. This study showed that MOR treatment inhibited osteolysis induced by breast cancer in vivo. MOR inhibited OC differentiation and bone resorption ex vivo and in vivo and might be a potential drug candidate for treating breast cancer-induced osteolysis.


Subject(s)
Breast Neoplasms , Osteolysis , Phosphatidylinositol 3-Kinase , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteolysis/metabolism , Osteolysis/drug therapy , Osteolysis/pathology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
5.
In Vivo ; 38(1): 134-146, 2024.
Article in English | MEDLINE | ID: mdl-38148077

ABSTRACT

BACKGROUND/AIM: As one of the common clinical diseases, fractures have many causes, mechanisms, healing and influencing factors; especially fracture healing is a long-term and complex process. Animal fracture models can simulate the various states of human fractures, and on this basis, the prevention, mechanism, and treatment of fractures can be studied to further guide clinical practice. MATERIALS AND METHODS: Here, we developed a novel and portable device to create a closed fracture model in mice. We then compared this novel closed fracture model with the traditional open model in multiple dimensions to evaluate the modelling process of establishment and healing. The two models were evaluated by imaging, immunostaining, and behavioral tests, which fully demonstrated the stability, universality and operability of the modified fracture model in mice. RESULTS: Surgical quality assessment revealed that the closed fracture model had a shorter operation time and smaller wound than the open model. X-ray and micro-CT results showed no differences between the two models in the evaluation of radiographic and morphological changes during fracture healing. Histological examination revealed the process of the typical intrachondral osteogenic pathway after fracture. Moreover, animal gait analysis indicated reduced postoperative pain in the closed group compared to the open group. CONCLUSION: This study provides a constructive strategy for a closed fracture model in mice and demonstrates the effectiveness and feasibility of the closed fracture model in studying the typical intrachondral osteogenic pathway of fractures from multiple dimensions.


Subject(s)
Fractures, Bone , Fractures, Closed , Mice , Humans , Animals , Fractures, Bone/diagnostic imaging , Fracture Healing , Models, Animal , Osteogenesis , Treatment Outcome
6.
Cancers (Basel) ; 15(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067392

ABSTRACT

Alternative splicing can produce transcripts that affect cancer development and thus shows potential for cancer diagnosis and treatment. However, intron retention (IR), a type of alternative splicing, has been studied less in cancer biology research. Here, we generated a pan-cancer IR landscape for more than 10,000 samples across 33 cancer types from The Cancer Genome Atlas (TCGA). We characterized differentially retained introns between tumor and normal samples and identified retained introns associated with survival. We discovered 988 differentially retained introns in 14 cancers, some of which demonstrated diagnostic potential in multiple cancer types. We also inferred a large number of prognosis-related introns in 33 cancer types, and the associated genes included well-known cancer hallmarks such as angiogenesis, metastasis, and DNA mutations. Notably, we discovered a novel intron retention inside the 5'UTR of STN1 that is associated with the survival of lung cancer patients. The retained intron reduces translation efficiency by producing upstream open reading frames (uORFs) and thereby inhibits colony formation and cell migration of lung cancer cells. Besides, the IR-based prognostic model achieved good stratification in certain cancers, as illustrated in acute myeloid leukemia. Taken together, we performed a comprehensive IR survey at a pan-cancer level, and the results implied that IR has the potential to be diagnostic and prognostic cancer biomarkers, as well as new drug targets.

7.
Medicines (Basel) ; 10(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36976313

ABSTRACT

Background: Hachimijiogan (HJG) and Bakumijiogan (BJG), two derivative prescriptions of Rokumijiogan (RJG), were selected to investigate their renoprotective potential in the 5/6 nephrectomized (5/6Nx) rat model. Methods: Rats were treated with HJG and BJG orally at 150 mg/kg body weight/day once daily for 10 weeks after resection of 5/6 of the renal volume, and their renoprotective effects were compared with 5/6Nx vehicle-treated and sham-operated control rats. Results: Improvements in renal lesions, glomerulosclerosis, tubulointerstitial injury, and arteriosclerotic lesions estimated by histologic scoring indices in the HJG-treated group were compared with those in the BJG-treated group. HJG- and BJG-treated groups ameliorated the renal function parameters. Elevated levels of renal oxidative stress-related biomarkers were reduced, while decreased antioxidant defence systems (superoxide dismutase and the glutathione/oxidized glutathione ratio) were increased in the HJG-treated group rather than the BJG-treated group. In contrast, BJG administration significantly reduced expression of the inflammatory response through oxidative stress. The HJG-treated group showed a decrease in inflammatory mediators through the JNK pathway. To gain a deeper understanding of their therapeutic action, the effects of the main components detected in HJG and BJG were evaluated using the LLC-PK1 renal tubular epithelial cell line, which is the renal tissue most vulnerable to oxidative stress. Corni Fructus and Moutan Cortex-originated compositions afforded important protection against oxidative stress induced by peroxynitrite. Conclusions: From our described and discussed analyses, it can be concluded that RJG-containing prescriptions, HJG and BJG are an excellent medicine for chronic kidney disease. In the future, appropriately designed clinical studies in people with chronic kidney disease are necessary to evaluate the renoprotective activities of HJG and BJG.

8.
Biopsychosoc Med ; 5: 5, 2011 May 02.
Article in English | MEDLINE | ID: mdl-21535889

ABSTRACT

BACKGROUND: Some women with depressive disorders experience severe premenstrual symptoms. However, there have been few studies in which premenstrual symptoms in women suffering from depressive disorders were assessed. In this study, we aimed to investigate premenstrual symptoms in women with depressive disorders using the premenstrual dysphoric disorder (PMDD) scale. METHODS: We administered questionnaires to 65 Japanese female outpatients who had been diagnosed with a major depressive disorder or dysthymic disorder and to 303 healthy women as control subjects. The questionnaire consisted of items on demographics and the PMDD scale, which was modified from the premenstrual symptoms screening tool (PSST) developed by Steiner et al. (Arch Womens Ment Health 2003, 6:203-209). RESULTS: Twenty-eight women (43.1%) with depressive disorder fulfilled certain items of the PMDD scale. These women are considered to have coexisting PMDD and a depressive disorder, or to have premenstrual exacerbation (PME) of a depressive disorder. On the other hand, 18 women (5.9%) in the control group were diagnosed as having PMDD. The depressive disorder group who fulfilled the PMDD criteria had more knowledge of the term premenstrual syndrome (PMS) and took more actions to attenuate premenstrual symptoms than the control group with PMDD. CONCLUSIONS: Our findings demonstrated that the occurrence of severe premenstrual symptoms is much higher in women with depressive disorders than in healthy subjects. This is partially due to this group containing women with PME, but mainly due to it containing women with PMDD. The higher percentage of PMDD suggests similarity between PMDD and other depressive disorders. Furthermore, educating healthy Japanese women and women with depressive disorders about premenstrual symptoms and evidence-based treatment for them is necessary.

SELECTION OF CITATIONS
SEARCH DETAIL
...