Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 333(8): 543-549, 2020 10.
Article in English | MEDLINE | ID: mdl-32543117

ABSTRACT

The possibility of ultraviolet (UV) photooxidation of cypermethrin generating more toxic intermediates or isomers demands that studies that look at the effects of cypermethrin and UV irradiation under a coexposure scenario be carried out. In this study, juvenile African catfish (Clarias gariepinus) were exposed to 50 µg/L cypermethrin, 100 µg/L cypermethrin, UV, 50 µg/L cypermethrin + UV or 100 µg/L cypermethrin + UV, in a static renewal for 3 weeks. The control fish were maintained in uncontaminated water, and not exposed to UV radiation. After the exposure duration, the fish were killed, and the activities of acid phosphatase, alkaline phosphatase, amylase, protease, and lipase were determined in the liver or intestinal homogenates. Also, the histopathology of some sections of the intestine was performed. The results showed that the activities of the enzymes decreased significantly following exposure to cypermethrin while there was no change in the activities of the enzymes due to UV irradiation alone. The histopathological analyses indicated that exposure to cypermethrin caused alterations in the histoarchitecture of the fish such as severe erosion of the mucosa layer, faded lamina propria, and disintegration of the muscle layer. The exposure of fish to both cypermethrin and UV irradiation caused significant decrease in the activities of the enzymes. This could be an indication that UV irradiation has the tendency to potentiate cypermethrin-induced toxicity in fish.


Subject(s)
Intestines/pathology , Pyrethrins/toxicity , Ultraviolet Rays , Animals , Catfishes/metabolism , Insecticides/toxicity , Lipase/metabolism , Liver/metabolism , Liver/pathology , Peptide Hydrolases/metabolism , Phosphoric Monoester Hydrolases/metabolism
2.
J Family Reprod Health ; 12(3): 148-159, 2018 Sep.
Article in English | MEDLINE | ID: mdl-31223321

ABSTRACT

Objective: Cisplatin has been established to cause reproductive dysfunction; Cochlospermum planchonii is globally used in folklore medicine and has numerous therapeutic benefits. This study focused on fertility enhancing activities of Cochlospermum planchonii (Cp) on cisplatin-induced reproductive dysfunctions. Materials and methods: Total of 30 male and 30 female adult Sprague-Dawley rats were used for this study. The male rats randomly assigned into Group A (control) was given normal saline 2 ml/kg, Group B, C, D and E rats received(single dose of 8 mg/kg Cisplatin (i.p.) on the first day), (500 mg/kg body weight (bwt) of Cponce once daily for 14 days), (single dose of 8 mg/kg Cisplatin (i.p.) on 1st day followed by 500 mg/kg bwt of Cp once daily for 14 days) and (single dose of 8 mg/kg Cisplatin on first day followed by 50 mg/kg vitamin C for 14 days). Parameters tested include reproductive hormones, testicular histology, testicular antioxidants, semen parameters and fertility test. Results: Histological profile of the testes revealed derangement of the testis cytoarchitecture; Seminiferous epithelium, body, testes, accessory sex organs weight and sperm parameters, were significantly reduced (p <0.05). Hormonal assay showed significant changes in testosterone (p< 0.05) while luteinizing hormone and follicle stimulating hormone remained unchanged following cisplatin administration and a marked improvement was observed after Cochlospermum planchonii administration. Similarly, Cochlospermum planchonii improved the reduction of antioxidant parameters (SOD, CAT, GPx and GSH) and the increased MDA caused by cisplatin ingestion. Conclusion: Cochlospermum planchonii may thus offer protection against free radical mediated oxidative stress of rats with cisplatin induced reproductive dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...