Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Exp Parasitol ; 248: 108500, 2023 May.
Article in English | MEDLINE | ID: mdl-36893971

ABSTRACT

The introduction of artemisinin combination therapies (ACTs) against malaria infections opened up a window of possibilities to combat malaria in pregnancy. However, the usefulness of ACTs in all stages of pregnancy must be critically assessed. This study was designed to evaluate dihydroartemisinin-piperaquine (DHAP) as a suitable alternative to sulphadoxine-pyrimethamine (SP) in the treatment of malaria during third-trimester pregnancy in mice. Experimental animals were inoculated with a parasitic dose of 1x106Plasmodium berghei (ANKA strain) infected erythrocytes and randomly allocated into treatment groups. The animals received standard doses of chloroquine alone (CQ)[10 mg/kg], SP [25 mg/kg] and [1.25 mg/kg] and DHAP [4 mg/kg] and [18 mg/kg] combinations. Maternal and pupil survival, litter sizes, pup weight and still-births were recorded, while the effect of the drug combinations on parasite suppression, recrudescence and parasite clearance time were evaluated. The day 4 chemo-suppression of parasitemia by DHAP in infected animals was comparable to SP, and CQ treatment (P > 0.05). The mean recrudescence time was significantly delayed (P = 0.031) in the DHAP treatment group compared to the CQ treatment group, while, there was no recrudescence in animals treated with SP. The birth rate in the SP group was significantly higher than in the DHAP group (P < 0.05). There was 100% maternal and pup survival in both combination treatments comparable with the uninfected gravid controls. The overall parasitological activity of SP against Plasmodium berghei in late-stage pregnancy appeared better than DHAP. In addition, SP treatment resulted in better birth outcomes assessed compared to DHAP treatment.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Animals , Female , Mice , Pregnancy , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Combinations , Drug Therapy, Combination , Malaria/drug therapy , Malaria/parasitology , Plasmodium berghei , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use
2.
J Ethnopharmacol ; 301: 115767, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36206872

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Persistent ketamine insults to the central nervous system block NMDA receptors and disrupt putative neurotransmission, oxido-nitrosative, and inflammatory pathways, resulting in schizophrenia-like symptoms in animals. Previously, the ethnomedicinal benefits of Carpolobia lutea against insomnia, migraine headache, and insanity has been documented, but the mechanisms of action remain incomplete. AIM OF THE STUDY: Presently, we explored the neuro-therapeutic role of Carpolobia lutea ethanol extract (C. lutea) in ketamine-induced schizophrenia-like symptoms in mice. MATERIALS AND METHODS: Sixty-four male Swiss (22 ± 2 g) mice were randomly assigned into eight groups (n = 8/group) and exposed to a reversal ketamine model of schizophrenia. For 14 days, either distilled water (10 mL/kg; p.o.) or ketamine (20 mg/kg; i.p.) was administered, following possible reversal treatments with C. lutea (100, 200, 400, and 800 mg/kg; p.o.), haloperidol (1 mg/kg, p.o.), or clozapine (5 mg/kg; p.o.) beginning on days 8-14. During the experiment, a battery of behavioral characterizations defining schizophrenia-like symptoms were obtained using ANY-maze software, followed by neurochemical, oxido-inflammatory and histological assessments in the mice brains. RESULTS: A 7-day reversal treatment with C. lutea reversed predictors of positive, negative and cognitive symptoms of schizophrenia. C. lutea also mitigated ketamine-induced neurochemical derangements as evidenced by modulations of dopamine, glutamate, norepinephrine and serotonin neurotransmission. Also, the increased acetylcholinesterase activity, malondialdehyde nitrite, interleukin-6 and tumor necrosis-factor-α concentrations were reversed by C. lutea accompanied with elevated levels of catalase, superoxide dismutase and reduced glutathione. Furthermore, C. lutea reversed ketamine-induced neuronal alterations in the prefrontal cortex, hippocampus and cerebellum sections of the brain. CONCLUSION: These findings suggest that C. lutea reverses the cardinal symptoms of ketamine-induced schizophrenia in a dose-dependent fashion by modulating the oxido-inflammatory and neurotransmitter-related mechanisms.


Subject(s)
Ethanol , Schizophrenia , Animals , Male , Mice , Acetylcholinesterase/metabolism , Antipsychotic Agents/pharmacology , Ethanol/pharmacology , Ketamine/adverse effects , Receptors, N-Methyl-D-Aspartate , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Schizophrenia/metabolism
3.
Neurotoxicol Teratol ; 86: 106982, 2021.
Article in English | MEDLINE | ID: mdl-33845156

ABSTRACT

Despite reports that quinoline antimalarials including chloroquine (Chq) exhibit idiosyncratic neuropsychiatric effects even at low doses, the drug continues to be in widespread use during pregnancy. Surprisingly, very few studies have examined the potential neurotoxic action of Chq exposure at different points of gestation or how this phenomenon may affect neurophysiological well-being in later life. We therefore studied behavior, and the expression of specific genes and neurochemicals modulating crucial neural processes in offspring of rats exposed to prophylactic dose of Chq during different stages of gestation. Pregnant rats were injected 5 mg/kg/day (3 times) of Chq either during early- (first week), mid- (second week), late- (third week), or throughout- (all weeks) gestation, while controls received PBS injection. Behavioral characterization of offspring between postnatal days 15-20 in the open field, Y-maze, elevated plus and elevated zero mazes revealed that Chq evoked anxiogenic responses and perturbed spatial memory in rats, although locomotor activity was generally unaltered. In the prefrontal cortex (PFC), hippocampus and cerebellum of rats prenatally exposed to Chq, RT-qPCR analysis revealed decreased mRNA expression of presynaptic marker synaptophysin, which was accompanied by downregulation of postsynaptic marker PSD95. Synaptic marker PICK1 expression was also downregulated in the hippocampus but was unperturbed in the PFC and cerebellum. In addition to recorded SOD downregulation in cortical and hippocampal lysates, induction of oxidative stress in rats prenatally exposed to Chq was corroborated by lipid peroxidation as evinced by increased MDA levels. Offspring of rats infused with Chq at mid-gestation and weekly treatment throughout gestation were particularly susceptible to neurotoxic changes, especially in the hippocampus. Interestingly, Chq did not cause histopathological changes in any of the brain areas. Taken together, our findings causally link intrauterine exposure to Chq with postnatal behavioral impairment and neurotoxic changes in rats.


Subject(s)
Behavior, Animal/drug effects , Brain Chemistry/drug effects , Chloroquine/toxicity , Neuronal Plasticity/drug effects , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/psychology , Animals , Anxiety/chemically induced , Anxiety/psychology , Female , Gene Expression/drug effects , Gestational Age , Maze Learning/drug effects , Motor Activity/drug effects , Pregnancy , Rats , Spatial Memory/drug effects
4.
J Neurosci Methods ; 345: 108890, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32768413

ABSTRACT

BACKGROUND: Nature and size of rodent cages vary from one laboratory or country to another. Little is however known about the physiological implications of exposure to diverse cage sizes in animal-based experiments. METHOD: Here, two groups of male Swiss mice (Control group - Cage stationed, and Test group - Cage migrated) were used for this study. The cage-migrated mice were exposed daily to various cage sizes used across laboratories in Nigeria while the cage-stationed mice exposed daily to different but the same cage size and shape. At the end of the 30 days exposure, top-rated paradigms were used to profile changes in physiological behaviours, and this was followed by evaluation of histological and biochemical metrics. RESULTS: The study showed a significant (p < 0.05) decrease in blood glucose levels (at 60 and 120 min of oral glucose tolerance test) in the cage-migrated mice compared to cage-stationed mice. Strikingly, peripheral oxidative stress (plasma malondialdehyde) and pain sensitivity (formalin test, hot-and-cold plate test, and von Frey test) decreased significantly in cage-migrated mice compared to cage-stationed animals. Also, the pro-inflammation mediators (IL-6 and NF-κB) increased significantly in cage-migrated mice compared to cage-stationed mice. However, emotion-linked behaviours, neurotransmitters (serotonin, noradrenaline and GABA), brain and plasma electrolytes were not significantly difference in cage-migrated animals compared to cage-stationed mice. CONCLUSION: Taken together, these results suggest that varied size cage-to-cage exposure of experimental mice could affect targeted behavioural and biomolecular parameters of pain and inflammation, thus diminishing research reproducibility, precipitating false negative/positive results and leading to poor translational outcomes.


Subject(s)
Pain Threshold , Pain , Animals , Biomarkers , Housing, Animal , Inflammation/chemically induced , Male , Mice , Reproducibility of Results
5.
Heliyon ; 6(3): e03514, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32190756

ABSTRACT

BACKGROUND: Kafura pelebe (camphor) {C10H16O} is a chemical substance used mostly amongst the Yoruba ethnic group in Western Nigeria to treat infantile colic during early childhood. This study assess the neurotoxic potentials of Kafura following sub-chronic exposure in female albino Wistar rats. METHODS: Twenty-eight female rats (mean weight of 130 g) were randomly selected and assigned into four (4) groups. Control, received 1ml coconut oil while the treatment groups received 79, 158 and 237. mg/kg b.wt (d ose p.o) of Kafura for the period of 14 days. On day fifteen, animals were dissected and the brain organ excised for the homogenate and histopathologic assay, blood samples were also collected for haematological analysis. Morris Water Maze experiment for reference memory was also carried out to ascertain effect of Kafura in the Central Nervous system (CNS). RESULTS: A trend toward decreased body-weight gain and increase brain weight was observed in Kafura-treated rats but was statistically not significant, compared to control. The biochemical assessment of the antioxidant status of brains of Kafura-treated rats showed significant (p ≤ 0.05) increase in activities of some anti-oxidant enzymes (Superoxide dismutase (SOD), Glutathione peroxide (GPx), and Catalase (CAT)). There was increase in acetylcholinesterase (AChE), Malondialdehyde (MDA), and Total protein activities in the brain of treated rats compared to control. Alterations of the haematological parameters were observed, with the plasma granulocytes, lymphocytes, and haemoglobin (HGB), showing significant decrease in the treated rats compared to control. The water maze test showed a marked increase in spatial learning and memory time (seconds) in kafura-treated rats, compared to control and across treated groups. CONCLUSIONS: The present study provides indication that kafura Pelebe shows apparent neurotoxicity in experimental animals. Incessant exposure in humans though may lead to development of some central nervous system defects.

6.
Malar J ; 18(1): 218, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31248414

ABSTRACT

BACKGROUND: Malaria eradication globally is yet to be achieved and transmission is sustained in many endemic countries. Plasmodium falciparum continues to develop resistance to currently available anti-malarial drugs, posing great problems for malaria elimination. This study evaluates the frequencies of asymptomatic infection and multidrug resistance-1 (mdr-1) gene mutations in parasite isolates, which form the basis for understanding persistently high incidence in South West, Nigeria. METHODS: A total of 535 individuals aged from 6 months were screened during the epidemiological survey evaluating asymptomatic transmission. Parasite prevalence was determined by histidine-rich protein II rapid detection kit (RDT) in healthy individuals. Plasmodium falciparum mdr-1 gene mutations were detected by polymerase chain reaction (PCR) followed by restriction enzyme digest and electrophoresis to determine polymorphism in parasite isolates. Sequencing was done to confirm polymorphism. Proportions were compared using Chi-square test at p value < 0.05. RESULTS: Malaria parasites were detected by RDT in 204 (38.1%) individuals. Asymptomatic infection was detected in 117 (57.3%) and symptomatic malaria confirmed in 87 individuals (42.6%). Overall, individuals with detectable malaria by RDT was significantly higher in individuals with symptoms, 87 of 197 (44.2%), than asymptomatic persons; 117 of 338 (34.6%), p = 0.02. In a sub-set of 75 isolates, 18(24%) and 14 (18.6%) individuals had Pfmdr1 86Y and 1246Y mutations. CONCLUSIONS: There is still high malaria transmission rate in Nigeria with higher incidence of asymptomatic infections. These parasites harbour mutations on Pfmdr1 which contribute to artemisinin partner drug resistance; surveillance strategies to reduce the spread of drug resistance in endemic areas are needed to eliminate the reservoir of malaria parasites that can mitigate the eradication of malaria in Nigeria.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/epidemiology , Multidrug Resistance-Associated Proteins/analysis , Plasmodium falciparum/genetics , Incidence , Malaria, Falciparum/parasitology , Mutation , Nigeria/epidemiology , Prevalence
7.
Cannabis Cannabinoid Res ; 3(1): 219-227, 2018.
Article in English | MEDLINE | ID: mdl-30498786

ABSTRACT

Background: The emergence of a multidrug-resistant strain of Plasmodium falciparum (Pf Pailin) raises concern about malaria control strategies. Unfortunately, the role(s) of natural plants/remedies in curtailing malaria catastrophe remains uncertain. The claims of potential antimalarial activity of Cannabis sativa in vivo have not been well established nor the consequences defined. This study was, therefore, designed to evaluate the effects of whole cannabis consumption on malaria-infected host. Methods: Thirty mice were inoculated with dose of 1×107 chloroquine-resistant Plasmodium berghei ANKA-infected erythrocyte and divided into six treatment groups. Cannabis diet formulations were prepared based on weighted percentages of dried cannabis and standard mice diet and the study animals were fed ad libitum. Chemosuppression of parasitemia, survival rates, parasite clearance, and recrudescence time were evaluated. Histopathological studies were performed on the prefrontal cortex (PFC) and hippocampus of the animals after 14 days' consumption of cannabis diet formulation by naive mice. Results: There was a significant difference (p<0.05) in the day-4 chemosuppression of parasitemia between the animals that were fed C. sativa and chloroquine relative to the untreated controls. There was also a significant difference in the survival rate (p<0.05) of animals fed C. sativa diet (40%, 20%, 10%, and 1%) in contrast to control animals on standard mice diet. A parasite clearance time of 2.18±0.4 was recorded in the chloroquine treatment group, whereas recrudescence in chloroquine group occurred on day 7. There were slight histomorphological changes in the PFC and cell densities of the dentate gyrus of the hippocampus of animals that were fed C. sativa. Conclusions: C. sativa displayed mild antimalarial activity in vivo. There was evident reduction in symptomatic manifestation of malaria disease, though unrelated to levels of parasitemia. This disease tolerance status may be beneficial, but may also constitute a transmission burden through asymptomatic carriage of parasites by habitual cannabis users.

8.
Int J Parasitol ; 46(8): 527-35, 2016 07.
Article in English | MEDLINE | ID: mdl-27150044

ABSTRACT

The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites.


Subject(s)
Antimalarials/pharmacology , Folic Acid Antagonists/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Tetrahydrofolate Dehydrogenase/drug effects , Thymidylate Synthase/drug effects , Animals , Dose-Response Relationship, Drug , Erythrocytes/parasitology , Female , Gene Expression , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Organisms, Genetically Modified , Plasmids , Plasmodium berghei/enzymology , Plasmodium berghei/genetics , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , RNA, Catalytic/drug effects , Specific Pathogen-Free Organisms , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Thymidylate Synthase/antagonists & inhibitors , Thymidylate Synthase/genetics , Thymidylate Synthase/metabolism , Transfection
10.
Malar J ; 13: 299, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25091936

ABSTRACT

BACKGROUND: Artemisinin-based combination therapy (ACT) remains the most effective chemotherapeutic strategy in the management of malaria. However, reports of reduced susceptibility of Plasmodium falciparum to the ACT justify the need for continued search for alternative anti-malarial drugs. The use of antibiotics with anti-malarial properties represents a potentially valuable chemotherapeutic option for the management of drug resistant infections. Thus, the intrinsic anti-malarial activity of the combination of clinical doses of rifampicin with amodiaquine and artemether was evaluated in an animal model using Plasmodium berghei. METHODS: A modification of the suppressive tests in vivo was employed. The anti-malarial activity of standard doses of amodiaquine (AQ) with or without artemether (ART) and combined with varying doses of rifampicin (RIF 15 mg/kg or RIF 30 mg/kg body weight) was evaluated in 40 mice sub-divided into eight groups and inoculated intraperitoneally with 1 × 10(7) red blood cells infected with chloroquine-resistant P. berghei ANKA strain. There were two control groups of animals, one group received amodiaquine alone while the other group received saline. Parasiticidal activity and survival of the animals were assessed over 21 days. RESULTS: Parasitaemia in the control animals peaked at 38% on day 9 and all animals died by day 10. The combination of amodiaquine with rifampicin 15 mg/kg body weight was the most effective of all the combinations and more efficacious than amodiaquine alone. The order of superiority of anti-malarial efficacy of the combinations was as follows; AQ + RIF 15 > AQ > AQ + ART + RIF 30 > AQ + ART + RIF 15 > AQ +RIF 30. CONCLUSION: The combination of the clinical dose of rifampicin (15 mg/kg) with amodiaquine represents a potentially valuable treatment option in management of drug resistant malaria. In addition, the role of pharmacokinetic interaction in multiple drug therapy cannot be over-emphasized.


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria/drug therapy , Plasmodium berghei , Rifampin/therapeutic use , Animals , Artemether , Drug Interactions , Drug Resistance , Drug Therapy, Combination , Malaria/mortality , Male , Mice , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...