Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301992, 2024.
Article in English | MEDLINE | ID: mdl-38640098

ABSTRACT

BACKGROUND AND OBJECTIVE: Diabetic neuropathy (DN) is a complex type of diabetes. The underlying cause of diabetic nephropathy remains unclear and may be due to a variety of pathological conditions resulting in kidney failure. This study examines the protective effect of the methanolic extract of Spilanthes filicaulis leaves (MESFL) in fructose-fed streptozotocin (STZ)-induced diabetic nephropathy and the associated pathway. METHODS: Twenty-five rats were equally divided randomly into five categories: Control (C), diabetic control, diabetic + metformin (100 mg/kg), diabetic + MESFL 150 mg/kg bw, and diabetic + MESFL 300 mg/kg bw. After 15 days, the rats were evaluated for fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea, uric acid, serum creatinine, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Gene expression levels of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response element-binding (CREB), cFOS and the antiapoptotic protein Bcl-2 were examined. RESULTS: We observed that MESFL at 150 and 300 mg/kg bw significantly downregulated the protein expression of cAMP, PKA, CREB, and cFOS and upregulated the Bcl-2 gene, suggesting that the nephroprotective action of MESFL is due to the suppression of the cAMP/PKA/CREB/cFOS signaling pathway. In addition, MESFL increases SOD and CAT activities and GSH levels, reduces MDA levels, and reduces renal functional indices (ALP, urea, uric acid, and creatinine). CONCLUSION: Therefore, our results indicate that MESFL alleviates the development of diabetic nephropathy via suppression of the cAMP/PKA/CREB/cFOS pathways.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Rats , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/metabolism , Streptozocin/pharmacology , Kidney/pathology , Uric Acid/metabolism , Superoxide Dismutase/metabolism , Oxidative Stress , Diabetes Mellitus/pathology
2.
Front Pharmacol ; 14: 1235810, 2023.
Article in English | MEDLINE | ID: mdl-37547334

ABSTRACT

Introduction: This study aimed to investigate the chemical profile of GC-MS, antioxidant, anti-diabetic, and anti-inflammatory activities of the ethyl acetate fraction of Spilanthes filicaulis leaves (EFSFL) via experimental and computational studies. Methods: After inducing oxidative damage with FeSO4, we treated the tissues with different concentrations of EFSFL. An in-vitro analysis of EFSFL was carried out to determine its potential for antioxidant, anti-diabetic, and anti-inflammatory activities. We also measured the levels of CAT, SOD, GSH, and MDA. Results and discussion: EFSFL exhibited anti-inflammatory properties through membrane stabilizing properties (IC50 = 572.79 µg/ml), proteinase inhibition (IC50 = 319.90 µg/ml), and inhibition of protein denaturation (IC50 = 409.88 µg/ml). Furthermore, EFSFL inhibited α-amylase (IC50 = 169.77 µg/ml), α-glucosidase (IC50 = 293.12 µg/ml) and DPP-IV (IC50 = 380.94 µg/ml) activities, respectively. Our results indicated that induction of tissue damage reduced the levels of GSH, SOD, and CAT activities, and increased MDA levels. However, EFSFL treatment restores these levels to near normal. GC-MS profiling shows that EFSFL contains 13 compounds, with piperine being the most abundant. In silico interaction of the phytoconstituents using molecular and ensembled-based docking revealed strong binding tendencies of two hit compounds to DPP IV (alpha-caryophyllene and piperine with a binding affinity of -7.8 and -7.8 Kcal/mol), α-glucosidase (alpha-caryophyllene and piperine with a binding affinity of -9.6 and -8.9 Kcal/mol), and to α-amylase (piperine and Benzocycloheptano[2,3,4-I,j]isoquinoline, 4,5,6,6a-tetrahydro-1,9-dihydroxy-2,10-dimethoxy-5-methyl with a binding affinity of -7.8 and -7.9 Kcal/mol), respectively. These compounds also presented druggable properties with favorable ADMET. Conclusively, the antioxidant, antidiabetic, and anti-inflammatory activities of EFSFL could be due to the presence of secondary metabolites.

3.
Andrologia ; 54(1): e14242, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34490912

ABSTRACT

Obesity (OBS) has been established as a link to male hypogonadism with consequent infertility. Previous studies have shown that melatonin (MEL) modulates hypothalamic-pituitary-gonadal function. The present study therefore investigated the hypothesis that MEL supplementation would attenuate spermatogenic and steroidogenic dysfunctions associated with obesity induced by high-fat diet (HFD). Twenty-four adult male Wistar rats (n = 6/group) were used: control group received vehicle (normal saline), obese group received 40% high-fat diet and distilled water, MEL-treated group received MEL (4 mg/kg), and OBS + MEL group received MEL and 40% HFD and the treatment lasted for 12 weeks. HFD caused increased body weight, glucose intolerance, plasma triglyceride and low-density lipoprotein cholesterol/ very low-density lipoprotein cholesterol and malondialdehyde, as well as decreased antioxidant capacity, high-density lipoprotein cholesterol, gonadotrophin-releasing hormone, follicle-stimulating hormone and testosterone and altered sperm parameters. However, all these alterations were attenuated when supplemented with MEL. Taken together, these results indicate that HFD exposure causes endocrine dysfunction and disrupted sperm parameters in obese animals, which are accompanied by lipid peroxidation/defective antioxidant capacity. In addition, the present results suggest that melatonin supplementation restores endocrine function and sperm integrity in obese rat model by suppression of oxidative stress-dependent mechanism.


Subject(s)
Diet, High-Fat , Melatonin , Animals , Diet, High-Fat/adverse effects , Male , Melatonin/pharmacology , Melatonin/therapeutic use , Obesity/drug therapy , Obesity/etiology , Oxidative Stress , Rats , Rats, Wistar , Spermatozoa
4.
Niger J Physiol Sci ; 37(2): 207-214, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-38243557

ABSTRACT

The contribution of prefrontal-hippocampal interactions to brain function of people infected with HIV may be aggravated by toxicities due to long-term use of antiretroviral agents. This study was designed to investigate the curative potential of Epigallotatechin gallate (EGCG) in the treatment of neurodegenerative disorders as a possible consequence of antiretroviral toxicity. Twenty-four adult male Wistar rats, weighing 80~100g, were divided into four groups and treated as follows: control A (distilled water), B (HAART), C (EGCG 2.5mg/kg), D (EGCG 2.5mg/kg) + HAART) Brain histology, immunohistochemistry, and oxidative stress markers such as superoxide dismutase (SOD), glutathione (GSH),catalase (CAT)  and malondialdehyde (MDA) were examined. The use of highly active antiretroviral therapy (HAART) showed extensive architectural deformation with pyknotic neuronal cells and obliterated neurons in the hippocampus and prefrontal cortex. Expression of inflammasome cells was also evident in this group. MDA levels increased significantly with a significant reduction in the levels of GSH, as well as antioxidant enzyme (SOD and CAT) activities compared to other treatment groups. Treatment with EGCG resulted in partial neuronal restoration of histopathological alterations, and modulation of NLRP3 inflammasome in the hippocampus and prefrontal cortex. EGCG also showed significant improvements in terms of increased antioxidant levels of SOD, GSH, CAT and a reduced MDA level and well-preserved brain architecture. Epigallocatechin gallate improves brain morphology and function with a reversal of HAART-induced alterations.


Subject(s)
Antioxidants , Catechin/analogs & derivatives , HIV Infections , Humans , Rats , Animals , Male , Antioxidants/therapeutic use , Rats, Wistar , Inflammasomes/metabolism , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Hippocampus , Prefrontal Cortex/metabolism , HIV Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...