Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-22, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38084747

ABSTRACT

This study examines the nutritional composition, phytochemical profiling, and antioxidant, antidiabetic, and anti-inflammatory potential of a methanolic extract of Spilanthes filicaulis leaves (MESFL) via in vitro, ex vivo, and in silico studies. In vitro antioxidant, antidiabetic, and anti-inflammatory activities were examined. In the ex vivo study, liver tissues were subjected to FeSO4-induced oxidative damage and treated with varying concentrations of MESFL. MESFL contains a reasonable amount of nitrogen-free extract, moisture, ash content, crude protein, and fat, with a lesser amount of crude fiber. According to GC-MS analysis, MESFL contains ten compounds, the most abundant of which are 13-octadecenal and Ar-tumerone. In this study, MESFL demonstrated anti-inflammatory activities via membrane stabilizing properties, proteinase inhibition, and inhibition of protein denaturation (IC50 = 72.75 ± 11.06 µg/mL). MESFL also strongly inhibited both α-amylase (IC50 = 307.02 ± 4.25 µg/mL) and α-glucosidase (IC50 = 215.51 ± 0.47 µg/mL) activities. Our findings also showed that FeSO4-induced tissue damage decreased the levels of GSH, SOD, and CAT activities while increasing the levels of MDA. In contrast, treatment with MESFL helped to restore these parameters to near-normal levels, which signifies that MESFL has great potential to address complications from oxidative stress. Furthermore, the in silico interaction of the GCMS-identified phytochemicals with the active sites of α-amylase and α-glucosidase via molecular and ensembled-based docking displayed strong binding affinities of Ar-tumerone and 4-hydroxy-3-methylacetophenone to α-amylase and α-glucosidase, respectively. Taken together, the biological activities of MESFL might be a result of the effects of these secondary metabolites.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-21, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112300

ABSTRACT

The nutritional as well as beneficial effects of the Artocarpus communis seed on metabolic syndrome complications have not been studied. In this research, the aim was to investigate the nutritional composition and beneficial effects of Artocarpus communis seeds' phytoconstituents on the p53 core, fat mass and obesity-associated (FTO) protein and cytochrome P450 CYP11A1 domains. The elements and phytochemicals in the seed were determined through atomic absorption spectroscopy assay and gas chromatography-mass spectrometry (GC-MS) analysis, respectively. Also, the compounds detected were docked to the p53 core, FTO protein and cytochrome P450 CYP11A1 domains protein. Artocarpus communis seed contains sodium (7.824 ± 0.0134 ppm), magnesium (10.187 ± 0.0239 ppm) and iron (1.924 ± 0.0017), while zinc and cadmium were undetected. Phenolics and flavonoids were the most abundant phytochemicals in the seed. Phytoconstituents, such as pentadecanoic acid, hexadecanoic acid and methyl ester, possessing different therapeutic effects were identified via GC-MS analysis. In A. communis seed, 3-methyl-4-nitro-5-(1-pyrazolyl) pyrazole and phenanthrene were able to bind more peculiarly and specifically to the p53 core, FTO protein and cytochrome P450 CYP11A1 domains. One of the important processes that were hypothesized for the recovery of metabolic syndrome in affected victims is shown by the molecular dynamics analysis, which shows that the binding of these chemicals to the targeted structure stabilized the proteins. Therefore, Artocarpus communis seeds could be a new strategy for the management of metabolic syndrome.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL
...