Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Nanobioscience ; 15(5): 433-442, 2016 07.
Article in English | MEDLINE | ID: mdl-27164598

ABSTRACT

This study investigated the green biosynthesis of gold (Au) and silver-gold alloy (Ag-Au) nanoparticles using cell-free extract of Bacillus safensis LAU 13 strain (GenBank accession No: KJ461434). The biosynthesized AuNPs and Ag-AuNPs were characterized using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy. Evaluation of the antifungal activities, degradation of malachite green, anti-coagulation of blood, and thrombolysis of human blood clot by the biosynthesized nanoparticles were investigated. The AuNPs and Ag-AuNPs had maximum absorbance at 561 and 545 nm, respectively. The FTIR peaks at 3318, 2378, 2114, 1998, 1636, 1287, 446, 421 cm-1 for AuNPs; and 3310, 2345, 2203, 2033, 1636, 1273, 502, 453, 424 cm-1 for Ag-AuNPs indicated that proteins were the capping and stabilization molecules in the biosynthesized nanoparticles. The particles were fairly spherical in shape with size of 10-45 nm for AuNPs and 13-80 nm for Ag-AuNPs. Moreover, energy dispersive X-ray analysis of AuNPs revealed gold as the most prominent metal in the AuNPs solution, while silver and gold were the most prominent in the case of Ag-AuNPs. Selected area electron diffraction showed the biosynthesized nanoparticles as crystal structures with ring shape pattern. AuNPs and Ag-AuNPs displayed growth inhibitions of 66.67-90.78% against strains of Aspergillus fumigatus and A. niger at concentration of 200 µg/ml , and remarkable degradation (> 90%) of malachite green after 48 h. Furthermore, the nanoparticles prevented coagulation of blood, and also completely dissolved blood clots, indicating the biomedical potential of AuNPs and Ag-AuNPs in the management of blood coagulation disorders. This is the first report of the synthesis of AuNPs and Ag-AuNPs using a strain of B. safensis for biomedical and catalytic applications.


Subject(s)
Antifungal Agents/pharmacology , Bacillus/metabolism , Fibrinolytic Agents/pharmacology , Gold Alloys/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Anticoagulants/chemistry , Anticoagulants/metabolism , Anticoagulants/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Aspergillus/drug effects , Bacillus/chemistry , Biodegradation, Environmental , Biotechnology , Cell-Free System , Coloring Agents/analysis , Coloring Agents/chemistry , Coloring Agents/metabolism , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/metabolism , Green Chemistry Technology , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...