Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38082615

ABSTRACT

Visualization of endovascular tools like guidewire and catheter is essential for procedural success of endovascular interventions. This requires tracking the tool pixels and motion during catheterization; however, detecting the endpoints of the endovascular tools is challenging due to their small size, thin appearance, and flexibility. As this still limit the performances of existing methods used for endovascular tool segmentation, predicting correct object location could provide ways forward. In this paper, we proposed a neighborhood-based method for detecting guidewire endpoints in X-ray angiograms. Typically, it consists of pixel-level segmentation and a post-segmentation step that is based on adjacency relationships of pixels in a given neighborhood. The latter includes skeletonization to predict endpoint pixels of guidewire. The method is evaluated with proprietary guidewire dataset obtained during in-vivo study in six rabbits, and it shows a high segmentation performance characterized with precision of 87.87% and recall of 90.53%, and low detection error with a mean pixel error of 2.26±0.14 pixels. We compared our method with four state-of-the-art detection methods and found it to exhibit the best detection performance. This neighborhood-based detection method can be generalized for other surgical tool detection and in related computer vision tasks.Clinical Relevance- The proposed method can be provided with better tool tracking and visualization systems during robot-assisted intravascular interventional surgery.


Subject(s)
Endovascular Procedures , Robotics , Rabbits , Animals , Catheterization , Catheters , Endovascular Procedures/methods , Angiography
2.
Article in English | MEDLINE | ID: mdl-38082889

ABSTRACT

Robot-assisted catheterization is routinely carried out for intervention of cardiovascular diseases. Meanwhile, the success of endovascular tool navigation depends on visualization and tracking cues available in the robotic platform. Currently, real-time motion analytics are lacking, while poor illumination during fluoroscopy affects existing physics- and learning-based methods used for tool segmentation. A multi-lateral branched network (MLB-Net) is herein proposed for tool segmentation in cardiovascular angiograms. The model has an encoder with multi-lateral separable convolutions and a pyramid decoder. Model training and validation are done on 1320 angiograms obtained during robot-assisted catheterization in rabbit. Model performance, explained with F1-score of 89.01% and mean intersection-over-union of 90.05% on 330 frames, indicates the model's robustness for guidewire segmentation in angiograms. The MLB-Net offers better performance than the state-of-the-art segmentation models such as U-Net, U-Net++ and DeepLabV3. Thus, it could provide basis for endovascular tool tracking and surgical scene analytics during cardiovascular interventions.


Subject(s)
Cardiovascular Diseases , Robotics , Animals , Rabbits , Angiography , Cues , Catheterization
3.
IEEE Trans Haptics ; PP2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38145539

ABSTRACT

Robot-assisted endovascular intervention has the potential to reduce radiation exposure to surgeons and enhance outcomes of interventions. However, the success and safety of endovascular interventions depend on surgeons' ability to accurately manipulate endovascular tools such as guidewire and catheter and perceive their safety when cannulating patient's vessels. Currently, the existing interventional robots lack a haptic system for accurate force feedback that surgeons can rely on. In this paper, a haptic-enabled endovascular interventional robot was developed. We proposed a dynamic hysteresis compensation model to address the challenges of hysteresis and nonlinearity in magnetic powder brake-based haptic interface, which were used for providing high-precision and higher dynamic range haptic perception. Also, for the first time, a human perceptual-based haptic enhancement model and safety strategy were integrated with the custom-built haptic interface for enhancing sensation discrimination ability during robot-assisted endovascular interventions. This can effectively amplify even subtle changes in low-intensity operational forces such that surgeons can better discern any vessel-tools interaction force. Several experimental studies were performed to show that the haptic interface and the kinesthetic perception enhancement model can enhance the transparency of robot-assisted endovascular interventions, as well as promote the safety awareness of surgeon.

4.
Micromachines (Basel) ; 14(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677258

ABSTRACT

Prior methods of patient care have changed in recent years due to the availability of minimally invasive surgical platforms for endovascular interventions. These platforms have demonstrated the ability to improve patients' vascular intervention outcomes, and global morbidities and mortalities from vascular disease are decreasing. Nonetheless, there are still concerns about the long-term effects of exposing interventionalists and patients to the operational hazards in the cath lab, and the perioperative risks that patients undergo. For these reasons, robot-assisted vascular interventions were developed to provide interventionalists with the ability to perform minimally invasive procedures with improved surgical workflow. We conducted a thorough literature search and presented a review of 130 studies published within the last 20 years that focused on robot-assisted endovascular interventions and are closely related to the current gains and obstacles of vascular interventional robots published up to 2022. We assessed both the research-based prototypes and commercial products, with an emphasis on their technical characteristics and application domains. Furthermore, we outlined how the robotic platforms enhanced both surgeons' and patients' perioperative experiences of robot-assisted vascular interventions. Finally, we summarized our findings and proposed three key milestones that could improve the development of the next-generation vascular interventional robots.

5.
Quant Imaging Med Surg ; 11(6): 2688-2710, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34079734

ABSTRACT

BACKGROUND: Cardiovascular diseases resulting from aneurism, thrombosis, and atherosclerosis in the cardiovascular system are major causes of global mortality. Recent treatment methods have been based on catheterization of flexible endovascular tools with imaging guidance. While advances in robotic intravascular catheterization have led to modeling tool navigation approaches with data sensing and feedback, proper adaptation of image-based guidance for robotic navigation requires the development of sensitive segmentation and tracking models without specificity loss. Several methods have been developed to tackle non-uniform illumination, low contrast; however, presence of untargeted body organs commonly found in X-ray frames taken during angiography procedures still presents some major issues to be solved. METHODS: In this study, a segmentation method was developed for automatic detection and tracking of guidewire pixels in X-ray angiograms. Image frames were acquired during robotic intravascular catheterization for cardiac interventions. For segmentation, multiscale enhancement filtering was applied on preprocessed X-ray angiograms, while morphological operations and filters were applied to refine the frames for pixel intensity adjustment and vesselness measurement. Minima and maxima extrema of the pixels were obtained to detect guidewire pixels in the X-ray frames. Lastly, morphological operation was applied for guidewire pixel connectivity and tracking in segmented pixels. Method validation was performed on 12 X-ray angiogram sequences which were acquired during in vivo intravascular catheterization trials in rabbits. RESULTS: The study outcomes showed that an overall accuracy of 0.995±0.001 was achieved for segmentation. Tracking performance was characterized with displacement and orientation errors observed as 1.938±2.429 mm and 0.039±0.040°, respectively. Evaluation studies performed against 9 existing methods revealed that this proposed method provides more accurate segmentation with 0.753±0.074 area under curve. Simultaneously, high tracking accuracy of 0.995±0.001 with low displacement and orientation errors of 1.938±2.429 mm and 0.039±0.040°, respectively, were achieved. Also, the method demonstrated higher sensitivity and specificity values compared to the 9 existing methods, with a relatively faster exaction time. CONCLUSIONS: The proposed method has the capability to enhance robotic intravascular catheterization during percutaneous coronary interventions (PCIs). Thus, interventionists can be provided with better tool tracking and visualization systems while also reducing their exposure to operational hazards during intravascular catheterization for cardiac interventions.

6.
Int Immunopharmacol ; 90: 107228, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33302035

ABSTRACT

The disease caused by viral pneumonia called severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) declared by the World Health Organization is a global pandemic that the world has witnessed since the last Ebola epidemic, SARS and MERS viruses. Many chemical compounds with antiviral activity are currently undergoing clinical investigation in order to find treatments for SARS-CoV-2 infected patients. On-going drug-drug interaction examinations on new, existing, and repurposed antiviral drugs are yet to provide adequate safety, toxicological, and effective monitoring protocols. This review presents an overview of direct and indirect antiviral drugs, antibiotics, and immune-stimulants used in the management of SARS-CoV-2. It also seeks to outline the recent development of drugs with anti-coronavirus effects; their mono and combination therapy in managing the disease vis-à-vis their biological sources and chemistry. Co-administration of these drugs and their interactions were discussed to provide significant insight into how adequate monitoring of patients towards effective health management could be achieved.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Humans , Risk
7.
Micromachines (Basel) ; 11(11)2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33233457

ABSTRACT

Research and industrial studies have indicated that small size, low cost, high precision, and ease of integration are vital features that characterize microelectromechanical systems (MEMS) inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS accelerometers and MEMS gyroscopes have been sought in an increased application range such as medical devices for health care to defense and military weapons. An important limitation of MEMS inertial sensors is repeatedly documented as the ease of being influenced by environmental noise from random sources, along with mechanical and electronic artifacts in the underlying systems, and other random noise. Thus, random error processing is essential for proper elimination of artifact signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic review is carried out by investigating different random error signal processing models that have been recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library. Forty-nine representative papers that focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS inertial measuring units, published in journal or conference formats, and indexed on the databases within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30 mainstream algorithms were extracted and categorized into seven groups, which were analyzed to present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the models developed in the studies was presented, along with their working principles viz., application domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial sensor technology and its application prospects were presented.

8.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003491

ABSTRACT

Recently, flexible tactile sensors based on three-dimensional (3D) porous conductive composites, endowed with high sensitivity, a wide sensing range, fast response, and the capability to detect low pressures, have aroused considerable attention. These sensors have been employed in different practical domain areas such as artificial skin, healthcare systems, and human-machine interaction. In this study, a facile, cost-efficient method is proposed for fabricating a highly sensitive piezoresistive tactile sensor based on a 3D porous dielectric layer. The proposed sensor is designed with a simple dip-coating homogeneous synergetic conductive network of carbon black (CB) and multi-walled carbon nanotube (MWCNTs) composite on polydimethysiloxane (PDMS) sponge skeletons. The unique combination of a 3D porous structure, with hybrid conductive networks of CB/MWCNTs displayed a superior elasticity, with outstanding electrical characterization under external compression. The piezoresistive tactile sensor exhibited a high sensitivity of (15 kPa-1), with a rapid response time (100 ms), the capability of detecting both large and small compressive strains, as well as excellent mechanical deformability and stability over 1000 cycles. Benefiting from a long-term stability, fast response, and low-detection limit, the piezoresistive sensor was successfully utilized in monitoring human physiological signals, including finger heart rate, pulses, knee bending, respiration, and finger grabbing motions during the process of picking up an object. Furthermore, a comprehensive performance of the sensor was carried out, and the sensor's design fulfilled vital evaluation metrics, such as low-cost and simplicity in the fabrication process. Thus, 3D porous-based piezoresistive tactile sensors could rapidly promote the development of high-performance flexible sensors, and make them very attractive for an enormous range of potential applications in healthcare devices, wearable electronics, and intelligent robotic systems.

9.
Micromachines (Basel) ; 11(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272641

ABSTRACT

Success of the da Vinci surgical robot in the last decade has motivated the development of flexible access robots to assist clinical experts during single-port interventions of core intrabody organs. Prototypes of flexible robots have been proposed to enhance surgical tasks, such as suturing, tumor resection, and radiosurgery in human abdominal areas; nonetheless, precise constraint control models are still needed for flexible pathway navigation. In this paper, the design of a flexible snake-like robot is presented, along with the constraints model that was proposed for kinematics and dynamics control, motion trajectory planning, and obstacle avoidance during motion. Simulation of the robot and implementation of the proposed control models were done in Matlab. Several points on different circular paths were used for evaluation, and the results obtained show the model had a mean kinematic error of 0.37 ± 0.36 mm with very fast kinematics and dynamics resolution times. Furthermore, the robot's movement was geometrically and parametrically continuous for three different trajectory cases on a circular pathway. In addition, procedures for dynamic constraint and obstacle collision detection were also proposed and validated. In the latter, a collision-avoidance scheme was kept optimal by keeping a safe distance between the robot's links and obstacles in the workspace. Analyses of the results showed the control system was optimal in determining the necessary joint angles to reach a given target point, and motion profiles with a smooth trajectory was guaranteed, while collision with obstacles were detected a priori and avoided in close to real-time. Furthermore, the complexity and computational effort of the algorithmic models were negligibly small. Thus, the model can be used to enhance the real-time control of flexible robotic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...