Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Porto Biomed J ; 6(3): e132, 2021.
Article in English | MEDLINE | ID: mdl-34136717

ABSTRACT

As an innovative therapeutic strategy, drug repurposing affords old, approved, and already established drugs a chance at new indications. In the wake of the COVID-19 pandemic and the accompanied urgency for a lasting treatment, drug repurposing has come in handy to stem the debilitating effects of the disease. Among other therapeutic options currently in clinical trials, chloroquine (CQ) and the hydroxylated analogue, hydroxychloroquine (HCQ) have been frontline therapeutic options in most formal and informal clinical settings with varying degrees of efficacy against this life-threatening disease. Their status in randomized clinical trials is related to the biochemical and pharmacological profiles as validated by in vitro, in vivo and case studies. With the aim to bear a balance for their use in the long run, this review not only synopsizes findings from recent studies on the degrees of efficacy and roles of CQ/HCQ as potential anti-COVID-19 agents but also highlights our perspectives for their consideration in rational drug repositioning and use.

2.
MethodsX ; 6: 1944-1949, 2019.
Article in English | MEDLINE | ID: mdl-31667090

ABSTRACT

This study was piloted to evaluate bioaccessibility of particulate-bound trace elements using synthetic epithelia lung fluid; in which dipalmitoylphophatidylcholine was substituted with locus bean gum (LBSFL). The resulting data reveal that no significant change in physicochemical characteristics of the stimulated lung fluid compare with similar synthetic fluids; pH value of 7.3, density (0.998gcm-3), conductivity (13.9 mS m-1), surface viscosity (1.136 × 10-12 pas) and surface tension (50.6 mN m-1). To prove the potential applicability of the fluid in in vitro bioaccessibility test, we compared bioaccessibility of particulates-bound trace elements using this fluid with those of stimulated epithelial lung fluid. Bioaccessibility were relatively low values (<30%) in locus bean substituted lung fluid and stimulated epithelial lung fluid. Specifically, As and Cd had significantly higher bioaccessibility values in locus bean substituted lung fluid than stimulated epithelial lung fluid. The data demonstrate that fluid formulated and used in this study can provide a suitable means of evaluate bioaccessibility of trace elements-bound to airborne particulates. •The fluid was used for assessing bioaccessibility of particulate matters-bound trace elements•The formulated fluid can be applied to study in toxicity assessment•The data can be used for inter-laboratory comparison of bioaccessibility of particulate -bound trace element and could stimulate environmental concerns on the impacts of airborne particulates.

3.
Article in English | MEDLINE | ID: mdl-24171424

ABSTRACT

A five-step sequential extraction (SE) procedure was used to investigate the leaching behaviour and geochemical partitioning of the trace elements As, Zn, Pb, Ni, Mo, Cr and Cu in a 20-year-old fly ash (FA) dump. The weathered FA, which was hydraulically co-disposed with salt laden brine in slurry form (FA: brine ratio of 1:5), was analyzed and compared with fresh FA. The weathered FA samples were collected from three cores, drilled at a coal-fired power station in the Republic of South Africa while the fresh FA sample was collected from the hoppers in the ash collection system at the power station. The FA samples were sequentially leached using: ultrapure water; ammonium acetate buffer solution (pH 7); ammonium acetate buffer solution (pH 5); hydroxylamine hydrochloride in nitric acid (pH 2) and finally the residues were digested using a combination of HClO4: HF: HNO3 acids. Digestion of as received (unleached) FA samples was also done using a combination of HClO4: HF: HNO3 acids in order to determine the total metal content. The trace element analysis was done using ICP-OES (Varian 710-ES). The SE procedure revealed that the trace elements present in the fresh FA and the weathered FA samples obtained from the three cores could leach upon exposure to different environmental conditions. The trace elements showed continuous partitioning between five geochemical phases i.e., water soluble fraction, exchangeable fraction, carbonate fraction, Fe and Mn fraction and residual fraction. Although the highest concentration of the trace elements (ranging 65.51%-86.34%) was contained in the residual fraction, a considerable amount of each trace element (ranging 4.42%-27.43%) was released from the labile phases (water soluble, exchangeable and carbonate fractions), indicating that the trace species readily leach from the dumped FA under environmental conditions thus pose a danger to the receiving environment and to groundwater.


Subject(s)
Coal Ash/chemistry , Trace Elements/chemistry , Chemical Fractionation , Hydroxylamine/chemistry , Salts/chemistry
4.
Materials (Basel) ; 7(4): 3305-3318, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-28788619

ABSTRACT

The synthesis of zeolites from South African coal fly ash has been deemed a viable solution to the growing economical strain caused by the disposal of ash in the country. Two synthesis routes have been studied thus far namely the 2-step method and the fusion assisted process. Fly ash contains several elements originating from coal which is incorporated in the ash during combustion. It is vital to determine the final destination of these elements in order to unveil optimization opportunities for scale-up purposes. The aim of this study was to perform a material balance study on both synthesis routes to determine the distributional fate of these elements during the synthesis of zeolites. Zeolites were first synthesized by means of the two synthesis routes. The composition of all raw materials and products were determined after which an overall and elemental balance were performed. Results indicated that in the 2-step method almost all elements were concentrated in the solid zeolite product while during the fusion assisted route the elements mostly report to the solid waste. Toxic elements such as Pb, Hg, Al, As and Nb were found in both the supernatant waste and washing water resulting from each synthesis route. It has also been seen that large quantities of Si and Al are wasted in the supernatant waste. It is highly recommended that the opportunity to recycle this liquid waste be investigated for scale-up purposes. Results also indicate that efficiency whereby Si and Al are extracted from fused ash is exceptionally poor and should be optimized.

5.
J Environ Manage ; 129: 479-92, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24013557

ABSTRACT

The mobility of species in coal fly ash (FA), co-disposed with brine using a wet ash handling system, from a coal fired power generating utility has been investigated. The study was conducted in order to establish if the wet ash dump could act as a salt sink. The ash was dumped as a slurry with 5:1 brine/ash ratio and the dam was in operation for 20 years. Weathered FA samples were collected along three cores at a South African power station's wet ash dump by drilling and sampling the ash at 1.5 m depth intervals. A fresh FA sample was collected from the hoppers in the ash collection system at the power station. Characterization of both fresh FA and weathered FA obtained from the drilled cores S1, S2 and S3 was done using X-ray diffraction (XRD) for mineralogy, X-ray fluorescence (XRF) for chemical composition and scanning electron microscopy (SEM) for morphology. Analysis of extracted pore water and moisture content determination of the fresh FA and the weathered FA obtained from the drilled cores S1, S2 and S3 was done in order to evaluate the physico-chemical properties of the FA. The XRD analysis revealed changes in mineralogy along cores S1, S2 and S3 in comparison with the fresh FA. The SEM analysis revealed spherical particles with smooth outer surfaces for the fresh FA while the weathered ash samples obtained from cores S1, S2 and S3 consisted of agglomerated, irregular particles appearing to be encrusted, etched and corroded showing that weathering and leaching had occurred in the ash dump. The moisture content (MC) analysis carried out on the fresh FA (1.8%) and the weathered FA obtained from the drilled cores S1 (41.4-73.2%), S2 (30.3-94%) and S3 (21.7-76.2%)indicated that the ash dump was water logged hence creating favourable conditions for leaching of species. The fresh fly ash (n = 3) had a pH of 12.38 ± 0.15, EC value of 4.98 ± 0.03 mS/cm and TDS value of 2.68 ± 0.03 g/L, the pH of the drilled core S1 (n = 45) was 10.04 ± 0.50, the EC value was 1.08 ± 0.14 mS/cm and the TDS value was 0.64 ± 0.08 g/L. Core S2 (n = 105) had pH of 10.04 ± 0.23; EC was 1.08 ± 0.06 mS/cm and TDS was 0.64 ± 0.04 g/L, while core S3 (n = 66) had pH of 11.04 ± 0.09; EC was 0.99 ± 0.03 mS/cm and TDS was 0.57 ± 0.01 g/L. The changes in pH values can be attributed to the dissolution and flushing out of alkaline oxides like CaO and MgO from the dumped ash. The variations in pH values shows that the fly ash is acidifying over time and metal mobility can be expected under these conditions. The large decrease of EC in the drilled ash cores S1, S2 and S3 compared to the fresh ash indicated a major loss of ionic species over time in the ash dump. The XRF analysis showed the progressive dissolution of the major aluminosilicate ash matrix which influenced the release of minor and trace elements into the pore water enhancing their mobility as the ash dam acidified over time. Brine co-disposal on the ash may have been responsible for the slight enrichment of some species such as Na (0.27-0.56%), SO4(2-) (0.06-0.08%), Mg (0.57-0.96 %) and K (0.02-0.34%) in the disposed weathered FA. However, there was no significant accumulation of these species in the disposed FA despite continuous addition of large volumes of highly saline brine over the 20 year period that the dump existed, indicating that the ash dam was incapable of holding salts and continually released elements to the environment over the lifetime of the dam.


Subject(s)
Coal Ash/chemistry , Refuse Disposal , Salts/chemistry , Microscopy, Electron, Scanning , South Africa , Spectrometry, X-Ray Emission , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL