Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(36): 50941-50965, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34386920

ABSTRACT

Coastal water quality in urban cities is increasingly impacted by human activities such as agricultural runoff, sewage discharges, and poor sanitation. However, environmental factors controlling bacteria abundance remain poorly understood. The study employed multiple indicators to assess ten beach water qualities in Ghana during minor wet seasons. Environmental parameters (e.g. temperature, electrical conductivity, total dissolved solids) were measured in situ using the Horiba multiple parameter probe. Surface water samples were collected to measure total suspended solids, nutrients, and chlorophyll-a via standard methods and bacteria determination through membrane filtration. Environmental parameters measured showed no significant variation for the sample period. However, bacteria loads differ significantly (p = 0.024) among the beaches and influenced significantly by nitrate (55.3%, p = 0.02) and total dissolved solids (17.1%, p = 0.017). The baseline study detected an increased amount of total coliforms and faecal indicator bacteria (Escherichia coli and Enterococcus spp.) in beach waters along the coast of Ghana, suggesting faecal contamination, which can pose health risks. The mean ± standard deviations of bacteria loads in beach water are total coliforms (4.06 × 103 ± 4.16 × 103 CFU/100 mL), E. coli (7.06 × 102 ± 1.72 × 103 CFU/100 mL), and Enterococcus spp. (6.15 × 102 ± 1.75 × 103 CFU/100 mL). Evidence of pollution calls for public awareness to prevent ecological and health-related risks and policy reforms to control coastal water pollution. Future research should focus on identifying the sources of contamination in the tropical Atlantic region.


Subject(s)
Enterococcus , Escherichia coli , Bacteria , Biomarkers , Environmental Monitoring , Feces , Humans , Public Health , Water Microbiology
2.
Environ Sci Pollut Res Int ; 27(34): 42556, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32827297

ABSTRACT

The correct equations are presented below.

3.
Environ Sci Pollut Res Int ; 27(34): 42530-42555, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32705561

ABSTRACT

Chemical contaminants are released from mining, domestic and industrial effluents into an aquatic environment. Sediments (n = 10) were collected with an Eckman grab at ten stations in the Densu Estuary for ecological risk assessment. The spatial distribution of organic characteristics and ecological risk of metals-zinc, lead, copper, mercury, iron, and manganese in sediment-were analyzed using standard methods. The organic parameters occurred in the ranges, as follows: % C, 0.76 to 2.05, % TN, 0.06 to 0.015; % TP, 0.44 to 1.38; and C/N, 12.31 to 34.81. The ranges of metal concentrations (mg/kg) were as follows: Fe, 201.10 to 720.90; Mn, 40.10 to 152.70; Zn, 7.3 to 158.3; Pb, 1.9 to 84.7; Cu 3.4 to 23.0; and Hg, 0.01 to 0.05. The mean concentration of metals in the sediment were Fe > Mn > Pb > Zn > Cu > Hg. The highest mean concentration of Fe suggested redox conditions in the Densu Estuary. There is a low contamination factor (CF) for five metals (Zn, Hg, Fe, Cu, and Mn) (CF < 1) to high contamination of Pb (3 < CF ≤ 6). The average Pb concentration was above local and geological backgrounds, suggesting an anthropogenic source of pollution from industrial and domestic effluents and agrochemicals. The sediment was extremely enriched by Pb (EF > 50) with a positive index of geoaccumulation (0 < Igeo ≤ 2) than other metals. There is considerable to a very high degree of contamination (DC) (3 ≤ DC ≥ 6) of metals in the sediment of Densu Estuary. The potential ecological risk index (≤ 40 PERI < 80) suggested a very low to moderate ecological risk of metal pollution. The study provides baseline knowledge on geochemical contamination in tropical estuarine systems for the development of effective chemical control strategies towards sustainable management of coastal waters.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Geologic Sediments , Ghana , Guinea , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
4.
Mar Pollut Bull ; 86(1-2): 575-581, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24997873

ABSTRACT

Plastic resin pellets collected at 11 beaches covering the whole Ghanaian coastline were analyzed for polychlorinated biphenyls (PCBs). PCB concentrations (∑13 congeners) were higher in Accra, capital city, and Tema (39-69 ng/g-pellets) than those in rural coastal towns (1-15 ng/g-pellets) which are close to global background, indicating local inputs of PCBs. River sediments were also analyzed for PCBs together with molecular markers. Sedimentary PCBs concentrations were highest at a site (AR02) downstream of an electronic waste (e-waste) scrapyard. At the site (AR02), concentration of linear alkylbenzenes (LABs), a marker of municipal wastewater, was lower than another site (AR03) which is located at the downstream of downtown Accra. This result suggests that PCBs are introduced more to the river from the e-waste site than from activities in downtown Accra. PAHs concentrations were relatively higher in urban areas with strong petrogenic signature. Abundance of triphenylbenzenes suggested plastic combustion near e-waste scrapyard.


Subject(s)
Electronic Waste/analysis , Geologic Sediments/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Cities , Environmental Monitoring/methods , Ghana , Plastics/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...