Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 22(1): 91-103.e5, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29276141

ABSTRACT

Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration.


Subject(s)
Cellular Reprogramming , Genetic Vectors/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Sendai virus/genetics , Action Potentials , Animals , Animals, Newborn , Cell Lineage , Cell Proliferation , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Transcription Factors/metabolism , Transgenes , Virion/metabolism
2.
Stem Cell Reports ; 5(6): 1128-1142, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26626177

ABSTRACT

Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming.


Subject(s)
Cellular Reprogramming Techniques/methods , Cellular Reprogramming , Fibroblast Growth Factors/metabolism , Fibroblasts/cytology , Myocytes, Cardiac/cytology , Vascular Endothelial Growth Factor A/metabolism , Animals , Cells, Cultured , Fibroblasts/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Up-Regulation , p38 Mitogen-Activated Protein Kinases/metabolism
3.
EMBO J ; 33(14): 1565-81, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24920580

ABSTRACT

Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming.


Subject(s)
Cell Transdifferentiation/physiology , Fibroblasts/metabolism , Gene Expression Regulation/physiology , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Analysis of Variance , Animals , Blotting, Western , Cell Transdifferentiation/genetics , Cloning, Molecular , Fibroblasts/cytology , Flow Cytometry , Gene Knockdown Techniques , Green Fluorescent Proteins , Humans , Immunohistochemistry , Mice , Microarray Analysis , Myocytes, Cardiac/cytology , Real-Time Polymerase Chain Reaction , Snail Family Transcription Factors , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...