Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
NPJ Microgravity ; 10(1): 84, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122696

ABSTRACT

The analysis of cells frozen within the International Space Station (ISS) will provide crucial insights into the impact of the space environment on cellular functions and properties. The objective of this study was to develop a method for cryopreserving blood cells under the specific constraints of the ISS. In a ground experiment, mouse blood was directly mixed with a cryoprotectant and gradually frozen at -80 °C. Thawing the frozen blood sample resulted in the successful recovery of viable mononuclear cells when using a mixed solution of dimethylsulfoxide and hydroxyethyl starch as a cryoprotectant. In addition, we developed new freezing cases to minimize storage space utilization within the ISS freezer. Finally, we confirmed the recovery of major mononuclear immune cell subsets from the cryopreserved blood cells through a high dimensional analysis of flow cytometric data using 13 cell surface markers. Consequently, this ground study lays the foundation for the cryopreservation of viable blood cells on the ISS, enabling their analysis upon return to Earth. The application of this method in ISS studies will contribute to understanding the impact of space environments on human cells. Moreover, this method may find application in the cryopreservation of blood cells in situations where research facilities are inadequate.

2.
Nat Commun ; 15(1): 5743, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030171

ABSTRACT

Sphingosine 1-phosphate receptor 1 (S1PR1), a G protein-coupled receptor, is required for lymphocyte trafficking, and is a promising therapeutic target in inflammatory diseases. Here, we synthesize a competitive S1PR1 antagonist, KSI-6666, that effectively suppresses pathogenic inflammation. Metadynamics simulations suggest that the interaction of KSI-6666 with a methionine residue Met124 in the ligand-binding pocket of S1PR1 may inhibit the dissociation of KSI-6666 from S1PR1. Consistently, in vitro functional and mutational analyses reveal that KSI-6666 causes pseudoirreversible inhibition of S1PR1, dependent on the Met124 of the protein and substituents on the distal benzene ring of KSI-6666. Moreover, in vivo study suggests that this pseudoirreversible inhibition is responsible for the persistent activity of KSI-6666.


Subject(s)
Sphingosine-1-Phosphate Receptors , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Animals , Humans , Mice , Mice, Inbred C57BL , HEK293 Cells , Inflammation/drug therapy , Inflammation/metabolism , Male
3.
Nat Commun ; 15(1): 953, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38296961

ABSTRACT

Autophagy is primarily activated by cellular stress, such as starvation or mitochondrial damage. However, stress-independent autophagy is activated by unclear mechanisms in several cell types, such as thymic epithelial cells (TECs). Here we report that the mitochondrial protein, C15ORF48, is a critical inducer of stress-independent autophagy. Mechanistically, C15ORF48 reduces the mitochondrial membrane potential and lowers intracellular ATP levels, thereby activating AMP-activated protein kinase and its downstream Unc-51-like kinase 1. Interestingly, C15ORF48-dependent induction of autophagy upregulates intracellular glutathione levels, promoting cell survival by reducing oxidative stress. Mice deficient in C15orf48 show a reduction in stress-independent autophagy in TECs, but not in typical starvation-induced autophagy in skeletal muscles. Moreover, C15orf48-/- mice develop autoimmunity, which is consistent with the fact that the stress-independent autophagy in TECs is crucial for the thymic self-tolerance. These results suggest that C15ORF48 induces stress-independent autophagy, thereby regulating oxidative stress and self-tolerance.


Subject(s)
Autoimmunity , Mitochondrial Proteins , Mice , Animals , Mitochondrial Proteins/metabolism , Oxidative Stress , Autophagy , Epithelial Cells/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism
4.
Genes Cells ; 28(12): 929-941, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37909727

ABSTRACT

One hallmark of some autoimmune diseases is the variability of symptoms among individuals. Organs affected by the disease differ between patients, posing a challenge in diagnosing the affected organs. Although numerous studies have investigated the correlation between T cell antigen receptor (TCR) repertoires and the development of infectious and immune diseases, the correlation between TCR repertoires and variations in disease symptoms among individuals remains unclear. This study aimed to investigate the correlation of TCRα and ß repertoires in blood T cells with the extent of autoimmune signs that varies among individuals. We sequenced TCRα and ß of CD4+ CD44high CD62Llow T cells in the blood and stomachs of mice deficient in autoimmune regulator (Aire) (AIRE KO), a mouse model of human autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Data analysis revealed that the degree of similarity in TCR sequences between the blood and stomach varied among individual AIRE KO mice and reflected the extent of T cell infiltration in the stomach. We identified a set of TCR sequences whose frequencies in blood might correlate with extent of the stomach manifestations. Our results propose a potential of using TCR repertoires not only for diagnosing disease development but also for diagnosing affected organs in autoimmune diseases.


Subject(s)
Autoimmune Diseases , Polyendocrinopathies, Autoimmune , Humans , Mice , Animals , CD4-Positive T-Lymphocytes , Receptors, Antigen, T-Cell/genetics
5.
Front Immunol ; 14: 1186154, 2023.
Article in English | MEDLINE | ID: mdl-38022666

ABSTRACT

The thymus has the ability to regenerate from acute injury caused by radiation, infection, and stressors. In addition to thymocytes, thymic epithelial cells in the medulla (mTECs), which are crucial for T cell self-tolerance by ectopically expressing and presenting thousands of tissue-specific antigens (TSAs), are damaged by these insults and recover thereafter. However, given recent discoveries on the high heterogeneity of mTECs, it remains to be determined whether the frequency and properties of mTEC subsets are restored during thymic recovery from radiation damage. Here we demonstrate that acute total body irradiation with a sublethal dose induces aftereffects on heterogeneity and gene expression of mTECs. Single-cell RNA-sequencing (scRNA-seq) analysis showed that irradiation reduces the frequency of mTECs expressing AIRE, which is a critical regulator of TSA expression, 15 days after irradiation. In contrast, transit-amplifying mTECs (TA-mTECs), which are progenitors of AIRE-expressing mTECs, and Ccl21a-expressing mTECs, were less affected. Interestingly, a detailed analysis of scRNA-seq data suggested that the proportion of a unique mTEC cluster expressing Ccl25 and a high level of TSAs was severely decreased by irradiation. In sum, we propose that the effects of acute irradiation disrupt the heterogeneity and properties of mTECs over an extended period, which potentially leads to an impairment of thymic T cell selection.


Subject(s)
Transcription Factors , Transcriptome , Mice , Animals , Transcription Factors/metabolism , Cell Differentiation , Mice, Inbred C57BL , Epithelial Cells/metabolism
6.
Bio Protoc ; 13(1): e4588, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36789086

ABSTRACT

Accessible chromatin regions modulate gene expression by acting as cis-regulatory elements. Understanding the epigenetic landscape by mapping accessible regions of DNA is therefore imperative to decipher mechanisms of gene regulation under specific biological contexts of interest. The assay for transposase-accessible chromatin sequencing (ATAC-seq) has been widely used to detect accessible chromatin and the recent introduction of single-cell technology has increased resolution to the single-cell level. In a recent study, we used droplet-based, single-cell ATAC-seq technology (scATAC-seq) to reveal the epigenetic profile of the transit-amplifying subset of thymic epithelial cells (TECs), which was identified previously using single-cell RNA-sequencing technology (scRNA-seq). This protocol allows the preparation of nuclei from TECs in order to perform droplet-based scATAC-seq and its integrative analysis with scRNA-seq data obtained from the same cell population. Integrative analysis has the advantage of identifying cell types in scATAC-seq data based on cell cluster annotations in scRNA-seq analysis.

7.
Elife ; 112022 05 17.
Article in English | MEDLINE | ID: mdl-35578835

ABSTRACT

Medullary thymic epithelial cells (mTECs) are critical for self-tolerance induction in T cells via promiscuous expression of tissue-specific antigens (TSAs), which are controlled by the transcriptional regulator, AIRE. Whereas AIRE-expressing (Aire+) mTECs undergo constant turnover in the adult thymus, mechanisms underlying differentiation of postnatal mTECs remain to be discovered. Integrative analysis of single-cell assays for transposase-accessible chromatin (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) suggested the presence of proliferating mTECs with a specific chromatin structure, which express high levels of Aire and co-stimulatory molecules, CD80 (Aire+CD80hi). Proliferating Aire+CD80hi mTECs detected using Fucci technology express a minimal number of Aire-dependent TSAs and are converted into quiescent Aire+CD80hi mTECs expressing high levels of TSAs after a transit amplification. These data provide evidence for the existence of transit-amplifying Aire+mTEC precursors during the Aire+mTEC differentiation process of the postnatal thymus.


Subject(s)
Chromatin , Single-Cell Analysis , Animals , Cell Differentiation/genetics , Chromatin/metabolism , Epithelial Cells/metabolism , Mice , Mice, Inbred C57BL , Thymus Gland , Transposases/metabolism
8.
J Immunol ; 208(2): 303-320, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34930780

ABSTRACT

The deficiency of Aire, a transcriptional regulator whose defect results in the development of autoimmunity, is associated with reduced expression of tissue-restricted self-Ags (TRAs) in medullary thymic epithelial cells (mTECs). Although the mechanisms underlying Aire-dependent expression of TRAs need to be explored, the physical identification of the target(s) of Aire has been hampered by the low and promiscuous expression of TRAs. We have tackled this issue by engineering mice with augmented Aire expression. Integration of the transcriptomic data from Aire-augmented and Aire-deficient mTECs revealed that a large proportion of so-called Aire-dependent genes, including those of TRAs, may not be direct transcriptional targets downstream of Aire. Rather, Aire induces TRA expression indirectly through controlling the heterogeneity of mTECs, as revealed by single-cell analyses. In contrast, Ccl25 emerged as a canonical target of Aire, and we verified this both in vitro and in vivo. Our approach has illuminated the Aire's primary targets while distinguishing them from the secondary targets.


Subject(s)
Autoantigens/immunology , Autoimmunity/immunology , Chemokines, CC/metabolism , Thymus Gland/immunology , Transcription Factors/metabolism , Animals , Autoimmunity/genetics , Chemokines, CC/genetics , Epithelial Cells/immunology , Gene Expression Regulation , Gene Knock-In Techniques , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Thymus Gland/cytology , Transcription Factors/genetics , Transcription, Genetic/genetics , AIRE Protein
9.
Front Immunol ; 12: 621824, 2021.
Article in English | MEDLINE | ID: mdl-33717123

ABSTRACT

Peripheral T cells capable of discriminating between self and non-self antigens are major components of a robust adaptive immune system. The development of self-tolerant T cells is orchestrated by thymic epithelial cells (TECs), which are localized in the thymic cortex (cortical TECs, cTECs) and medulla (medullary TECs, mTECs). cTECs and mTECs are essential for differentiation, proliferation, and positive and negative selection of thymocytes. Recent advances in single-cell RNA-sequencing technology have revealed a previously unknown degree of TEC heterogeneity, but we still lack a clear picture of the identity of TEC progenitors in the adult thymus. In this review, we describe both earlier and recent findings that shed light on features of these elusive adult progenitors in the context of tissue homeostasis, as well as recovery from stress-induced thymic atrophy.


Subject(s)
Adult Stem Cells/physiology , Autoantigens/immunology , Epithelial Cells/physiology , Immunologic Deficiency Syndromes/immunology , T-Lymphocytes/immunology , Thymus Gland/cytology , Animals , Cell Differentiation , Clonal Selection, Antigen-Mediated , Humans , Immune Tolerance , Immunity, Cellular
10.
Nat Commun ; 11(1): 6169, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33268794

ABSTRACT

A repertoire of T cells with diverse antigen receptors is selected in the thymus. However, detailed mechanisms underlying this thymic positive selection are not clear. Here we show that the CCR4-NOT complex limits expression of specific genes through deadenylation of mRNA poly(A) tails, enabling positive selection. Specifically, the CCR4-NOT complex is up-regulated in thymocytes before initiation of positive selection, where in turn, it inhibits up-regulation of pro-apoptotic Bbc3 and Dab2ip. Elimination of the CCR4-NOT complex permits up-regulation of Bbc3 during a later stage of positive selection, inducing thymocyte apoptosis. In addition, CCR4-NOT elimination up-regulates Dab2ip at an early stage of positive selection. Thus, CCR4-NOT might control thymocyte survival during two-distinct stages of positive selection by suppressing expression levels of pro-apoptotic molecules. Taken together, we propose a link between CCR4-NOT-mediated mRNA decay and T cell selection in the thymus.


Subject(s)
Apoptosis/genetics , Exoribonucleases/genetics , Repressor Proteins/genetics , Thymocytes/immunology , Thymus Gland/immunology , Animals , Apoptosis/immunology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , Cell Differentiation , Cell Lineage/genetics , Cell Lineage/immunology , Exoribonucleases/immunology , Gene Expression Regulation, Developmental , Mice , Poly A/genetics , Poly A/immunology , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/immunology , Repressor Proteins/immunology , Signal Transduction , Thymocytes/cytology , Thymus Gland/cytology , Thymus Gland/growth & development , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/immunology
11.
Commun Biol ; 2: 444, 2019.
Article in English | MEDLINE | ID: mdl-31815199

ABSTRACT

Thymic crosstalk, a set of reciprocal regulations between thymocytes and the thymic environment, is relevant for orchestrating appropriate thymocyte development as well as thymic recovery from various exogenous insults. In this work, interactions shaping thymic crosstalk and the resultant dynamics of thymocytes and thymic epithelial cells are inferred based on quantitative analysis and modeling of the recovery dynamics induced by irradiation. The analysis identifies regulatory interactions consistent with known molecular evidence and reveals their dynamic roles in the recovery process. Moreover, the analysis also predicts, and a subsequent experiment verifies, a previously unrecognized regulation of CD4+CD8+ double positive thymocytes which temporarily increases their proliferation rate upon the decrease in their population size. Our model establishes a pivotal step towards the dynamic understanding of thymic crosstalk as a regulatory network system.


Subject(s)
Cell Communication , Cellular Microenvironment , Models, Biological , Thymocytes/metabolism , Thymus Gland/physiology , Algorithms , Animals , Cell Proliferation , Epithelial Cells/metabolism , Mice , Radiation, Ionizing , Recovery of Function , Thymocytes/radiation effects , Thymus Gland/radiation effects
12.
Sci Rep ; 9(1): 19866, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882694

ABSTRACT

The environment experienced during spaceflight may impact the immune system and the thymus appears to undergo atrophy during spaceflight. However, molecular aspects of this thymic atrophy remain to be elucidated. In this study, we analysed the thymi of mice on board the international space station (ISS) for approximately 1 month. Thymic size was significantly reduced after spaceflight. Notably, exposure of mice to 1 × g using centrifugation cages in the ISS significantly mitigated the reduction in thymic size. Although spaceflight caused thymic atrophy, the global thymic structure was not largely changed. However, RNA sequencing analysis of the thymus showed significantly reduced expression of cell cycle-regulating genes in two independent spaceflight samples. These reductions were partially countered by 1 × g exposure during the space flights. Thus, our data suggest that spaceflight leads to reduced proliferation of thymic cells, thereby reducing the size of the thymus, and exposure to 1 × g might alleviate the impairment of thymus homeostasis induced by spaceflight.


Subject(s)
Gravity, Altered , Space Flight , Thymus Gland/metabolism , Animals , Base Sequence , Enzyme-Linked Immunosorbent Assay , Male , Mice , Mice, Inbred C57BL , Principal Component Analysis , RNA-Seq
13.
Sci Rep ; 9(1): 7654, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31114014

ABSTRACT

Secondary lymphoid organs are critical for regulating acquired immune responses. The aim of this study was to characterize the impact of spaceflight on secondary lymphoid organs at the molecular level. We analysed the spleens and lymph nodes from mice flown aboard the International Space Station (ISS) in orbit for 35 days, as part of a Japan Aerospace Exploration Agency mission. During flight, half of the mice were exposed to 1 g by centrifuging in the ISS, to provide information regarding the effect of microgravity and 1 g exposure during spaceflight. Whole-transcript cDNA sequencing (RNA-Seq) analysis of the spleen suggested that erythrocyte-related genes regulated by the transcription factor GATA1 were significantly down-regulated in ISS-flown vs. ground control mice. GATA1 and Tal1 (regulators of erythropoiesis) mRNA expression was consistently reduced by approximately half. These reductions were not completely alleviated by 1 g exposure in the ISS, suggesting that the combined effect of space environments aside from microgravity could down-regulate gene expression in the spleen. Additionally, plasma immunoglobulin concentrations were slightly altered in ISS-flown mice. Overall, our data suggest that spaceflight might disturb the homeostatic gene expression of the spleen through a combination of microgravity and other environmental changes.


Subject(s)
GATA1 Transcription Factor/metabolism , Space Flight , Spleen/metabolism , Transcriptome , Animals , Down-Regulation , Erythropoiesis , GATA1 Transcription Factor/genetics , Mice , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Weightlessness/adverse effects
14.
Biochem Biophys Res Commun ; 501(3): 745-750, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29753741

ABSTRACT

Hindlimb unloading (HU) of rodents has been used as a ground-based model of spaceflight. In this study, we investigated the detailed impact of 14-day HU on the murine thymus. Thymic mass and cell number were significantly reduced after 14 days of hindlimb unloading, which was accompanied by an increment of plasma corticosterone. Although corticosterone reportedly causes selective apoptosis of CD4+CD8+ thymocytes (CD4+CD8+DPs) in mice treated with short-term HU, the reduction of thymocyte cellularity after the 14-day HU was not selective for CD4+CD8+DPs. In addition to the thymocyte reduction, the cellularity of thymic epithelial cells (TECs) was also reduced by the 14-day HU. Flow cytometric and RNA-sequencing analysis suggested that medullary TECs (mTECs) were preferentially reduced after HU. Moreover, immunohistochemical staining suggested that the 14-day HU caused a reduction of the mTECs expressing autoimmune regulator (Aire). Our data suggested that HU impacts both thymocytes and TECs. Consequently, these data imply that thymic T cell repertoire formation could be disturbed during spaceflight-like stress.


Subject(s)
Epithelial Cells/cytology , Hindlimb Suspension/methods , Thymocytes/cytology , Thymus Gland/physiology , Transcription Factors/analysis , Animals , CD4 Antigens/analysis , CD8 Antigens/analysis , Cell Count , Male , Mice, Inbred C57BL , Organ Size , Thymus Gland/cytology , Time Factors , AIRE Protein
15.
J Exp Med ; 213(8): 1441-58, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27401343

ABSTRACT

Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire(+) mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire(+) mTECs and efficiently suppressed the onset of autoimmunity induced by Aire(+) mTEC deficiency. Mechanistically, pMECs differentiated into Aire(+) mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-ß receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire(+) mTECs.


Subject(s)
Cell Differentiation/immunology , Epithelial Cells/immunology , Gene Expression Regulation/immunology , Mouse Embryonic Stem Cells/immunology , Thymus Gland/immunology , Transcription Factors/immunology , Animals , Cell Differentiation/genetics , Epithelial Cells/cytology , Gene Expression Regulation/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Plant Lectins/genetics , Plant Lectins/immunology , Thymus Gland/cytology , Transcription Factors/genetics , AIRE Protein
16.
Exp Anim ; 65(2): 175-87, 2016 May 20.
Article in English | MEDLINE | ID: mdl-26822934

ABSTRACT

The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.


Subject(s)
Gravitation , Housing, Animal , Phenotype , Space Flight , Weightlessness , Animals , Femur/anatomy & histology , Heart/anatomy & histology , Kidney/anatomy & histology , Male , Mice, Inbred C57BL , Muscle, Skeletal/anatomy & histology , Spermatozoa/physiology , Thymus Gland/anatomy & histology , Time Factors
17.
PLoS One ; 10(10): e0141650, 2015.
Article in English | MEDLINE | ID: mdl-26513242

ABSTRACT

Gravity change affects many immunological systems. We investigated the effects of hypergravity (2G) on murine thymic cells. Exposure of mice to 2G for three days reduced the frequency of CD4+CD8+ thymocytes (DP) and mature medullary thymic epithelial cells (mTECs), accompanied by an increment of keratin-5 and keratin-8 double-positive (K5+K8+) TECs that reportedly contain TEC progenitors. Whereas the reduction of DP was recovered by a 14-day exposure to 2G, the reduction of mature mTECs and the increment of K5+K8+ TEC persisted. Interestingly, a surgical lesion of the inner ear's vestibular apparatus inhibited these hypergravity effects. Quantitative PCR analysis revealed that the gene expression of Aire and RANK that are critical for mTEC function and development were up-regulated by the 3-day exposure and subsequently down-regulated by the 14-day exposure to 2G. Unexpectedly, this dynamic change in mTEC gene expression was independent of the vestibular apparatus. Overall, data suggest that 2G causes a temporary reduction of DP and a persistent reduction of mature mTECs in a vestibular system-dependent manner, and also dysregulates mTEC gene expression without involving the vestibular system. These data might provide insight on the impact of gravity change on thymic functions during spaceflight and living.


Subject(s)
Cell Count , Epithelial Cells/metabolism , Hypergravity , T-Lymphocyte Subsets/metabolism , Thymocytes/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Animals , Biomarkers , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Gene Expression , Immunophenotyping , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Time Factors
18.
Front Immunol ; 6: 461, 2015.
Article in English | MEDLINE | ID: mdl-26441966

ABSTRACT

Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell-cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-ß and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell-cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system.

19.
Sci Rep ; 5: 10758, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26029823

ABSTRACT

Nuclear factor (NF)-κB-inducing kinase (NIK) is a serine/threonine kinase that activates NF-κB pathways, thereby regulating a wide variety of immune systems. Aberrant NIK activation causes tumor malignancy, suggesting a requirement for precise regulation of NIK activity. To explore novel interacting proteins of NIK, we performed in vitro virus screening and identified the catalytic subunit Aα isoform of serine/threonine phosphatase calcineurin (CnAα) as a novel NIK-interacting protein. The interaction of NIK with CnAα in living cells was confirmed by co-immunoprecipitation. Calcineurin catalytic subunit Aß isoform (CnAß) also bound to NIK. Experiments using domain deletion mutants suggested that CnAα and CnAß interact with both the kinase domain and C-terminal region of NIK. Moreover, the phosphatase domain of CnAα is responsible for the interaction with NIK. Intriguingly, we found that TRAF3, a critical regulator of NIK activity, also binds to CnAα and CnAß. Depletion of CnAα and CnAß significantly enhanced lymphotoxin-ß receptor (LtßR)-mediated expression of the NIK-dependent gene Spi-B and activation of RelA and RelB, suggesting that CnAα and CnAß attenuate NF-κB activation mediated by LtßR-NIK signaling. Overall, these findings suggest a possible role of CnAα and CnAß in modifying NIK functions.


Subject(s)
Calcineurin/metabolism , Gene Expression Regulation , Protein Serine-Threonine Kinases/metabolism , Animals , Catalytic Domain , Cell Line/metabolism , Cytokine TWEAK , Humans , Isoenzymes , Lymphotoxin beta Receptor/metabolism , Mice , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Proto-Oncogene Proteins c-ets/genetics , Signal Transduction , TNF Receptor-Associated Factor 3/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelB/metabolism , Transcription Factors/genetics , Tumor Necrosis Factors/metabolism , NF-kappaB-Inducing Kinase
20.
J Biochem ; 158(6): 485-95, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26115685

ABSTRACT

RelB is activated by the non-canonical NF-κB pathway, which is crucial for immunity by establishing lymphoid organogenesis and B-cell and dendritic cell (DC) maturation. To elucidate the mechanism of the RelB-mediated immune cell maturation, a precise understanding of the relationship between cell maturation and RelB expression and activation at the single-cell level is required. Therefore, we generated knock-in mice expressing a fusion protein between RelB and fluorescent protein (RelB-Venus) from the Relb locus. The Relb(Venus/Venus) mice developed without any abnormalities observed in the Relb(-/-) mice, allowing us to monitor RelB-Venus expression and nuclear localization as RelB expression and activation. Relb(Venus/Venus) DC analyses revealed that DCs consist of RelB(-), RelB(low) and RelB(high) populations. The RelB(high) population, which included mature DCs with projections, displayed RelB nuclear localization, whereas RelB in the RelB(low) population was in the cytoplasm. Although both the RelB(low) and RelB(-) populations barely showed projections, MHC II and co-stimulatory molecule expression were higher in the RelB(low) than in the RelB(-) splenic conventional DCs. Taken together, our results identify the RelB(low) population as a possible novel intermediate maturation stage of cDCs and the Relb(Venus/Venus) mice as a useful tool to analyse the dynamic regulation of the non-canonical NF-κB pathway.


Subject(s)
Dendritic Cells/immunology , Single-Cell Analysis , Transcription Factor RelB/metabolism , Animals , B-Lymphocytes/metabolism , B7-2 Antigen/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Differentiation/genetics , Cells, Cultured , Dendritic Cells/cytology , Female , Gene Expression Regulation , Gene Knock-In Techniques , Genes, MHC Class II , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Spleen/cytology , Thymus Gland/cytology , Transcription Factor RelB/genetics
SELECTION OF CITATIONS
SEARCH DETAIL