Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10637, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724569

ABSTRACT

Hadron therapy is an advanced radiation modality for treating cancer, which currently uses protons and carbon ions. Hadrons allow for a highly conformal dose distribution to the tumour, minimising the detrimental side-effects due to radiation received by healthy tissues. Treatment with hadrons requires sub-millimetre spatial resolution and high dosimetric accuracy. This paper discusses the design, fabrication and performance tests of a detector based on Gas Electron Multipliers (GEM) coupled to a matrix of thin-film transistors (TFT), with an active area of 60 × 80 mm2 and 200 ppi resolution. The experimental results show that this novel detector is able to detect low-energy (40 kVp X-rays), high-energy (6 MeV) photons used in conventional radiation therapy and protons and carbon ions of clinical energies used in hadron therapy. The GEM-TFT is a compact, fully scalable, radiation-hard detector that measures secondary electrons produced by the GEMs with sub-millimetre spatial resolution and a linear response for proton currents from 18 pA to 0.7 nA. Correcting known detector defects may aid in future studies on dose uniformity, LET dependence, and different gas mixture evaluation, improving the accuracy of QA in radiotherapy.


Subject(s)
Radiometry , Radiometry/instrumentation , Radiometry/methods , Humans , Radiotherapy/methods , Radiotherapy/standards , Radiotherapy/instrumentation , Quality Assurance, Health Care , Electrons , Radiotherapy Dosage , Neoplasms/radiotherapy , Equipment Design , Proton Therapy/instrumentation , Proton Therapy/methods
2.
Sci Adv ; 9(7): eadf9861, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36800431

ABSTRACT

Remote measurement of vital sign parameters like heartbeat and respiration rate represents a compelling challenge in monitoring an individual's health in a noninvasive way. This could be achieved by large field-of-view, easy-to-integrate unobtrusive sensors, such as large-area thin-film photodiodes. At long distances, however, discriminating weak light signals from background disturbance demands superior near-infrared (NIR) sensitivity and optical noise tolerance. Here, we report an inherently narrowband solution-processed, thin-film photodiode with ultrahigh and controllable NIR responsivity based on a tandem-like perovskite-organic architecture. The device has low dark currents (<10-6 mA cm-2), linear dynamic range >150 dB, and operational stability over time (>8 hours). With a narrowband quantum efficiency that can exceed 200% at 850 nm and intrinsic filtering of other wavelengths to limit optical noise, the device exhibits higher tolerance to background light than optically filtered silicon-based sensors. We demonstrate its potential in remote monitoring by measuring the heart rate and respiration rate from distances up to 130 cm in reflection.

3.
J Am Chem Soc ; 135(30): 11006-14, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23822850

ABSTRACT

Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5'bis(4-alkylphenyl)-2,2'-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling.

4.
Nat Commun ; 2: 437, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21847111

ABSTRACT

For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor. On the basis of estimates from the Marcus theory of charge transfer rates, we identified a novel compound expected to demonstrate a theoretic twofold improvement in mobility over the parent molecule. Synthetic and electrical characterization of the compound is reported with single-crystal field-effect transistors, showing a remarkable saturation and linear mobility of 12.3 and 16 cm(2) V(-1) s(-1), respectively. This is one of the very few organic semiconductors with mobility greater than 10 cm(2) V(-1) s(-1) reported to date.

5.
Nat Nanotechnol ; 3(12): 749-54, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19057596

ABSTRACT

The ultimate target of molecular electronics is to combine different types of functional molecules into integrated circuits, preferably through an autonomous self-assembly process. Charge transport through self-assembled monolayers has been investigated previously, but problems remain with reliability, stability and yield, preventing further progress in the integration of discrete molecular junctions. Here we present a technology to simultaneously fabricate over 20,000 molecular junctions-each consisting of a gold bottom electrode, a self-assembled alkanethiol monolayer, a conducting polymer layer and a gold top electrode-on a single 150-mm wafer. Their integration is demonstrated in strings where up to 200 junctions are connected in series with a yield of unity. The statistical analysis on these molecular junctions, for which the processing parameters were varied and the influence on the junction resistance was measured, allows for the tentative interpretation that the perpendicular electrical transport through these monolayer junctions is factorized.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Electronics , Microelectrodes , Nanostructures , Nanotechnology , Polymers , Algorithms , Electric Conductivity , Gold
6.
Small ; 4(1): 100-4, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18098243

ABSTRACT

The orientation of alkanedithiol molecules in self-assembled monolayers (SAMs) is of vital importance for their transport properties in molecular junctions. It is demonstrated that a too-low concentration of long alkanedithiols in ethanol leads to the formation of looped molecules, resulting in a 50-fold increase of the current through the SAM. X-ray photoelectron spectroscopy measurements show that high-concentration dithiol solutions result in a preferential standing-up phase. To obtain an almost full standing-up phase of 1,14-tetradecanedithiol (C14) a 30 mM concentration in ethanol is required, whereas a 0.3 mM concentration leads to a highly looped monolayer. The conduction through the full standing-up phase of C14 and C16 is in accordance with the exponential dependence on molecule length as obtained from shorter alkanedithiols.


Subject(s)
Alkanes/chemistry , Sulfhydryl Compounds/chemistry
7.
Proc Natl Acad Sci U S A ; 104(27): 11161-6, 2007 Jul 03.
Article in English | MEDLINE | ID: mdl-17592120

ABSTRACT

The electrical transport through self-assembled monolayers of alkanedithiols was studied in large-area molecular junctions and described by the Simmons model [Simmons JG (1963) J Appl Phys 34:1793-1803 and 2581-2590] for tunneling through a practical barrier, i.e., a rectangular barrier with the image potential included. The strength of the image potential depends on the value of the dielectric constant. A value of 2.1 was determined from impedance measurements. The large and well defined areas of these molecular junctions allow for a simultaneous study of the capacitance and the tunneling current under operational conditions. Electrical transport for octanedithiol through tetradecanedithiol self-assembled monolayers up to 1 V can simultaneously be described by a single effective mass and a barrier height. There is no need for additional fit constants. The barrier heights are in the order of 4-5 eV and vary systematically with the length of the molecules. Irrespective of the length of the molecules, an effective mass of 0.28 was determined, which is in excellent agreement with theoretical predictions.


Subject(s)
Alkanes/chemistry , Electronics , Electrons , Toluene/analogs & derivatives , Models, Chemical , Toluene/chemistry
8.
Nature ; 441(7089): 69-72, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16672966

ABSTRACT

Electronic transport through single molecules has been studied extensively by academic and industrial research groups. Discrete tunnel junctions, or molecular diodes, have been reported using scanning probes, break junctions, metallic crossbars and nanopores. For technological applications, molecular tunnel junctions must be reliable, stable and reproducible. The conductance per molecule, however, typically varies by many orders of magnitude. Self-assembled monolayers (SAMs) may offer a promising route to the fabrication of reliable devices, and charge transport through SAMs of alkanethiols within nanopores is well understood, with non-resonant tunnelling dominating the transport mechanism. Unfortunately, electrical shorts in SAMs are often formed upon vapour deposition of the top electrode, which limits the diameter of the nanopore diodes to about 45 nm. Here we demonstrate a method to manufacture molecular junctions with diameters up to 100 microm with high yields (> 95 per cent). The junctions show excellent stability and reproducibility, and the conductance per unit area is similar to that obtained for benchmark nanopore diodes. Our technique involves processing the molecular junctions in the holes of a lithographically patterned photoresist, and then inserting a conducting polymer interlayer between the SAM and the metal top electrode. This simple approach is potentially low-cost and could pave the way for practical molecular electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...