Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 393: 130139, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040312

ABSTRACT

Polyhydroxybutyrate (PHB) is a biodegradable polymer that has potential to replace petroleum-derived plastics. However, the commercialisation of PHB is hindered by high production costs. In this study, the material flow and economics of an industrial scale PHB production process using fructose, formic acid and carbon dioxide (CO2) as carbon sources were simulated and analysed. The lowest breakeven price of 3.64 $/kg PHB was obtained when fructose was utilized as carbon source. When formic acid and CO2 were used, the breakeven price was 10.30 and 10.24 $/kg PHB due to raw material cost, respectively. Although using formic acid and CO2 is more expensive, they meet the emerging sustainable needs for plastic production and contribute to the circular economy via CO2 fixation. This study suggests that the use of formic acid and CO2 as feedstock for PHB production has potential to become competitive in the bioplastic market with further research.


Subject(s)
Cupriavidus necator , Formates , Polyesters , Carbon Dioxide , Fructose , Polyhydroxybutyrates , Hydroxybutyrates
2.
Membranes (Basel) ; 13(12)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38132912

ABSTRACT

Membrane biofilm reactors are a growing trend in wastewater treatment whereby gas-transfer membranes provide efficient bubbleless aeration. Recently, there has been a growing interest in using these bioreactors for industrial biotechnology using microorganisms that can metabolise gaseous substrates. Since gas fermentation is limited by the low solubilities of gaseous substrates in liquid media, it is critical to characterise mass transfer rates of gaseous substrates to enable the design of membrane biofilm reactors. The objective of this study is to measure and analyse mass transfer rates and reaction engineering characteristics for a single tube membrane biofilm reactor using Cupriavidus necator H16. At elevated Reynolds numbers, the dominant resistance for gas diffusion shifts from the liquid boundary layer to the membrane. The biofilm growth rate was observed to decrease after 260 µm at 96 h. After 144 h, some sloughing of the biofilm occurred. Oxygen uptake rate and substrate utilisation rate for the biofilm developed showed that the biofilm changes from a single-substrate limited regime to a dual-substrate-limited regime after 72 h which alters the localisation of the microbial activity within the biofilm. This study shows that this platform technology has potential applications for industrial biotechnology.

3.
Bioresour Technol ; 341: 125793, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34450442

ABSTRACT

The potential of membrane bioreactors to produce value-added products such as biofuels, biopolymers, proteins, organic acids and lipids at high productivities is emerging. Despite the promising results at laboratory scale, industrial deployment of this technology is hindered due to challenges associated with scale-up. This review aims to address these challenges and create a framework to encourage further research directed towards industrial application of membrane bioreactors to produce value-added products. This review describes the current state-of-the art in such bioreactor systems by exploiting membranes to increase the mass transfer rate of the limiting substrates, reach high cell concentrations and separate the inhibitory substances that may inhibit the bioconversion reaction. It also covers the current trends in commercialization, challenges linked with membrane usage, such as high costs and membrane fouling, and proposes possible future directions for the wider application of membrane bioreactors.


Subject(s)
Bioreactors , Membranes, Artificial , Biofuels , Biopolymers , Organic Chemicals
SELECTION OF CITATIONS
SEARCH DETAIL
...