Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 4: e632, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23681227

ABSTRACT

Disrupting inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)/B-cell lymphoma 2 (Bcl-2) complexes using a cell-permeable peptide (stabilized TAT-fused IP3R-derived peptide (TAT-IDP(S))) that selectively targets the BH4 domain of Bcl-2 but not that of B-cell lymphoma 2-extra large (Bcl-Xl) potentiated pro-apoptotic Ca(2+) signaling in chronic lymphocytic leukemia cells. However, the molecular mechanisms rendering cancer cells but not normal cells particularly sensitive to disrupting IP3R/Bcl-2 complexes are poorly understood. Therefore, we studied the effect of TAT-IDP(S) in a more heterogeneous Bcl-2-dependent cancer model using a set of 'primed to death' diffuse large B-cell lymphoma (DL-BCL) cell lines containing elevated Bcl-2 levels. We discovered a large heterogeneity in the apoptotic responses of these cells to TAT-IDP(S) with SU-DHL-4 being most sensitive and OCI-LY-1 being most resistant. This sensitivity strongly correlated with the ability of TAT-IDP(S) to promote IP3R-mediated Ca(2+) release. Although total IP3R-expression levels were very similar among SU-DHL-4 and OCI-LY-1, we discovered that the IP3R2-protein level was the highest for SU-DHL-4 and the lowest for OCI-LY-1. Strikingly, TAT-IDP(S)-induced Ca(2+) rise and apoptosis in the different DL-BCL cell lines strongly correlated with their IP3R2-protein level, but not with IP3R1-, IP3R3- or total IP3R-expression levels. Inhibiting or knocking down IP3R2 activity in SU-DHL-4-reduced TAT-IDP(S)-induced apoptosis, which is compatible with its ability to dissociate Bcl-2 from IP3R2 and to promote IP3-induced pro-apoptotic Ca(2+) signaling. Thus, certain chronically activated B-cell lymphoma cells are addicted to high Bcl-2 levels for their survival not only to neutralize pro-apoptotic Bcl-2-family members but also to suppress IP3R hyperactivity. In particular, cancer cells expressing high levels of IP3R2 are addicted to IP3R/Bcl-2 complex formation and disruption of these complexes using peptide tools results in pro-apoptotic Ca(2+) signaling and cell death.


Subject(s)
Apoptosis/drug effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Peptides/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Calcium/metabolism , Cell Line, Tumor , Humans , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate Receptors/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Peptides/chemistry , Protein Binding , Protein Isoforms/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , RNA Interference , RNA, Small Interfering/metabolism
2.
Cell Death Differ ; 19(2): 295-309, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21818117

ABSTRACT

Antiapoptotic B-cell lymphoma 2 (Bcl-2) targets the inositol 1,4,5-trisphosphate receptor (IP(3)R) via its BH4 domain, thereby suppressing IP(3)R Ca(2+)-flux properties and protecting against Ca(2+)-dependent apoptosis. Here, we directly compared IP(3)R inhibition by BH4-Bcl-2 and BH4-Bcl-Xl. In contrast to BH4-Bcl-2, BH4-Bcl-Xl neither bound the modulatory domain of IP(3)R nor inhibited IP(3)-induced Ca(2+) release (IICR) in permeabilized and intact cells. We identified a critical residue in BH4-Bcl-2 (Lys17) not conserved in BH4-Bcl-Xl (Asp11). Changing Lys17 into Asp in BH4-Bcl-2 completely abolished its IP(3)R-binding and -inhibitory properties, whereas changing Asp11 into Lys in BH4-Bcl-Xl induced IP(3)R binding and inhibition. This difference in IP(3)R regulation between BH4-Bcl-2 and BH4-Bcl-Xl controls their antiapoptotic action. Although both BH4-Bcl-2 and BH4-Bcl-Xl had antiapoptotic activity, BH4-Bcl-2 was more potent than BH4-Bcl-Xl. The effect of BH4-Bcl-2, but not of BH4-Bcl-Xl, depended on its binding to IP(3)Rs. In agreement with the IP(3)R-binding properties, the antiapoptotic activity of BH4-Bcl-2 and BH4-Bcl-Xl was modulated by the Lys/Asp substitutions. Changing Lys17 into Asp in full-length Bcl-2 significantly decreased its binding to the IP(3)R, its ability to inhibit IICR and its protection against apoptotic stimuli. A single amino-acid difference between BH4-Bcl-2 and BH4-Bcl-Xl therefore underlies differential regulation of IP(3)Rs and Ca(2+)-driven apoptosis by these functional domains. Mutating this residue affects the function of Bcl-2 in Ca(2+) signaling and apoptosis.


Subject(s)
Apoptosis , Calcium Signaling , Calcium/metabolism , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Animals , Cytoprotection , Immobilized Proteins/metabolism , Mice , Molecular Sequence Data , Mutation/genetics , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , Rats , Sequence Alignment , Structure-Activity Relationship , bcl-X Protein/chemistry
3.
Leukemia ; 21(4): 788-96, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17287851

ABSTRACT

Adult T-cell leukemia/lymphoma (ATLL) is a malignancy slowly emerging from human T-cell leukemia virus type 1 (HTLV-I)-infected mature CD4(+) T-cells. To characterize the molecular modifications induced by HTLV-I infection, we compared HTLV-I-infected WE17/10 cells with control cells, using micro-arrays. Many calcium-related genes were progressively downmodulated over a period of 2 years. Infected cells acquired a profound decrease of intracellular calcium levels in response to ionomycin, timely correlated with decreased CD7 expression. Focusing on apoptosis-related genes and their relationship with CD7, we observed an underexpression of most antiapoptotic genes. Western blotting revealed increasing Akt and Bad phosphorylation, timely correlated with CD7 loss. This was shown to be phosphatidylinositol 3-kinase (PI3K)-dependent. Activation of PI3K/Akt induced resistance to the apoptotic effect of interleukin-2 deprivation. We thus propose the following model: HTLV-I infection induces a progressive decrease in CD3 genes expression, which eventually abrogates CD3 expression; loss of CD3 is known to perturb calcium transport. This perturbation correlates with loss of CD7 expression and induction of Akt and Bad phosphorylation via activation of PI3K. The activation of the Akt/Bad pathway generates a progressive resistance to apoptosis, at a time HTLV-I genes expression is silenced, thus avoiding immune surveillance. This could be a major event in the process of the malignant transformation into ATLL.


Subject(s)
Antigens, CD7/genetics , CD4-Positive T-Lymphocytes/immunology , Calcium Signaling/physiology , Cell Transformation, Neoplastic , HTLV-I Infections/physiopathology , Oncogene Protein v-akt/genetics , bcl-Associated Death Protein/genetics , Antigens, CD7/physiology , Apoptosis , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/pathology , Cell Line , Flow Cytometry , Gene Expression Regulation, Viral , Humans , Ionomycin/pharmacology , Oncogene Protein v-akt/physiology , RNA/genetics , RNA/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , bcl-Associated Death Protein/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...