Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Orthod Dentofacial Orthop ; 158(3): 391-399, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32653347

ABSTRACT

INTRODUCTION: Enameloplasty of maxillary canines is often needed for aesthetic substitution in patients with congenitally missing lateral incisors. The exact enamel thicknesses for the various canine surfaces are unknown because previous studies failed to employ accurate measurement tools to report and compare detailed enamel thicknesses for each surface at various crown heights. METHODS: Thirty-two extracted maxillary canines were collected and scanned in a microcomputed tomography scanner. The scans were imported into a custom-written MATLAB software (version 9.2; MathWorks, Natick, Mass) and the enamel thickness on the mesial, distal, labial, fossa, cingulum, and incisal edge of each tooth was computed, obtaining the mean value from slices at 0.1 mm intervals. The overall mean enamel thickness for each surface was also calculated, and these values were compared using paired t tests. Incisal wear stage and incisal enamel thickness that was measured were compared using Spearman rank correlation coefficient. RESULTS: The mean enamel thickness was significantly thinner at the gingival level when compared with the incisal for all surfaces that were analyzed (1-tailed, P <0.001). The mean enamel coverage at the mesial was significantly thinner than the distal when measured gingival to the widest mesiodistal area. The mean enamel coverage of the cingulum was particularly thin and therefore requires extreme care in reshaping it. Incisal edge enamel thickness was highly negatively correlated with the wear stage of the scoring system that was used (1-tailed, P <0.001). CONCLUSIONS: The enamel coverage of the maxillary canine varies depending on the tooth surface and the incisogingival measurement location.


Subject(s)
Cuspid , Esthetics, Dental , Dental Enamel , Humans , Maxilla , Odontometry , X-Ray Microtomography
2.
Am J Orthod Dentofacial Orthop ; 148(6): 1026-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26672709

ABSTRACT

INTRODUCTION: Morphologic homogeneity is desirable in sample selection of clinical studies that evaluate methods of treating craniofacial discrepancies in orthodontics. The purposes of this study were to assess sample selection criteria commonly used in the orthodontic literature regarding their effectiveness in achieving morphologic homogeneity, and to propose a method that can guarantee selection of a homogeneous sample, for which the degree of homogeneity and the average skeletal pattern can be specified a priori. METHODS: Pretreatment lateral cephalograms from 170 consecutive patients (82 boys, 88 girls) aged 7 to 17 years were used. Sixteen skeletal and 4 dental landmarks were digitized and processed with Procrustes superimposition and principal component analysis. The sample was bootstrapped to a virtual population of 10,000 subjects by random sampling from the normal distribution for each principal component. A systematic literature search of randomized controlled trials showed that the most prevalent sample selection criteria, in addition to molar relationship, included overjet, ANB, and SN-GoGn. Each criterion was applied to the virtual population. The morphologic homogeneity of the samples was assessed as the percentage of shape variance of each sample relative to the shape variance of the population. RESULTS: The first 3 principal components incorporated approximately 53% of shape variability. The evaluated criteria achieved low or moderate morphologic homogeneity scores (range, 28%-63%), and the selected patients were widely spread in the shape space. Although the criteria are commonly applied for selecting samples with skeletal discrepancies, a considerable number of subjects with an average shape were selected. The proposed procedure entails selecting a skeletal pattern appropriate for the study's purpose, setting limits in shape space within which the sample should be confined, and testing candidate patients against these limits. The patients within these boundaries have, by definition, a similar shape to the selected skeletal pattern and form a homogeneous sample. CONCLUSIONS: The cephalometric variables that have been used in randomized controlled trials do not result in samples of high morphologic homogeneity. The proposed method guarantees high morphologic homogeneity. The extent of homogeneity, the average shape of the sample, and the sample's relationship to the general population's average can be specified a priori.


Subject(s)
Cephalometry/statistics & numerical data , Facial Bones/pathology , Orthodontics, Corrective/statistics & numerical data , Patient Selection , Randomized Controlled Trials as Topic/statistics & numerical data , Skull/pathology , Adolescent , Algorithms , Anatomic Landmarks/pathology , Child , Female , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Male , Mandible/pathology , Maxilla/pathology , Molar/pathology , Nasal Bone/pathology , Normal Distribution , Overbite/pathology , Principal Component Analysis , Sella Turcica/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...