Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Ther Adv Rare Dis ; 5: 26330040241227452, 2024.
Article in English | MEDLINE | ID: mdl-38445267

ABSTRACT

Background: Adult Polyglucosan Body Disease (APBD) is an ultra-rare, genetic neurodegenerative disorder caused by autosomal recessive mutations in the glycogen branching enzyme gene. Knowledge of the demographic and clinical characteristics of APBD patients and the natural history of the disease is lacking. We report here initial results from a patient-reported registry of APBD patients. Objectives: (1) Maximize the quality of the APBD Registry survey data; (2) provide an initial report on APBD disease progression and natural history using these data; and (3) specify next steps in the process for testing potential new therapies. Design: Data are from members of the APBD Research Foundation (New York), surveyed from 2014 by the Columbia APBD Patient/Family (CAP) Registry. Inclusion criteria are: disease onset at age 18+ and progressive clinical triad of peripheral neuropathy, spasticity, and neurogenic bladder. Methods: Genetic testing results were used when available. Respondents found to not have APBD in clinical records were excluded. All changes and exclusions were recorded in a database edit log. Results are reported in frequency tables, bar graphs, time plots, and heat maps. Results: The 96 respondents meeting inclusion criteria were predominantly (96.8%) White, highly educated (89.3% at least some college education), and mostly (85.1%) of Ashkenazi Jewish descent. 57.1% had at least one parent born in the United States, with at least one grandparent from Europe (excluding Russia; 75.4%), the United States (42.1%), or Russia (33.3%). 37.2% reported a family history of APBD, and 33.3% had an affected sibling. Median APBD onset age was 51 [Interquartile range (IQR) 11], and median age of diagnosis 57 (IQR 10.5). The 75 reported prior misdiagnoses were mainly peripheral neuropathy (43, 60.6%) and spinal stenosis (11, 15.1%). Conclusion: Although from a demographically constricted survey, the results provide basic clinical information for future studies to develop treatments for APBD.


A United States based patient-reported adult polyglucosan body disease registry: initial results Adult Polyglucosan Body Disease, or APBD, is an ultra-rare neurological disorder caused by mutations of the GBE1 gene. While potential therapies exist, to establish if they work we need a "natural history" study that shows the normal path of the disease. Our goal was to provide the first patient-reported natural history study of APBD. We analyzed survey data from 96 patients recruited by the APBD Research Foundation (New York), aged 18 or older, who self-reported having APBD. We maximized data quality by using results from genetic testing when these were available, and by excluding respondents if we could not review clinical records confirming they had APBD. More than 95% of our 96 patients were white. They were highly educated: 89% had at least some college education. Most (85%) were of Ashkenazi Jewish descent. More than half (57.1%) had a parent born in the United States. Many had at least one grandparent from Europe (excluding Russia) (75.4%), the United States (42.1%), or Russia (33.3%). More than a third (37%) reported a family history of APBD, and a third reported that they had a brother or a sister with a history of the disease. Their average age at APBD onset was 51, and their average age at APBD diagnosis was 57. Previous misdiagnoses were common: 75 were reported. Most were for peripheral neuropathy (60.6%) or spinal stenosis (16.7%). Although our data come from a survey of patients who are demographically similar, they provide a report on the characteristics of patients with APBD and basic information that is essential for studies to develop treatments for the disease.

2.
JCI Insight ; 9(8)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483541

ABSTRACT

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.


Subject(s)
Aniline Compounds , Caprylates , Glioblastoma , Ketoglutarate Dehydrogenase Complex , Sulfides , Sulfonamides , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays , bcl-X Protein , Animals , Humans , Mice , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Aniline Compounds/pharmacology , bcl-X Protein/metabolism , bcl-X Protein/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Cell Line, Tumor , Citric Acid Cycle/drug effects , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/drug therapy , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/pharmacology
4.
Clin Cancer Res ; 28(9): 1881-1895, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35417530

ABSTRACT

PURPOSE: Novel therapeutic targets are critical to unravel for the most common primary brain tumor in adults, glioblastoma (GBM). We have identified a novel synthetic lethal interaction between ClpP activation and HDAC1/2 inhibition that converges on GBM energy metabolism. EXPERIMENTAL DESIGN: Transcriptome, metabolite, and U-13C-glucose tracing analyses were utilized in patient-derived xenograft (PDX) models of GBM. Orthotopic GBM models were used for in vivo studies. RESULTS: We showed that activation of the mitochondrial ClpP protease by mutant ClpP (Y118A) or through utilization of second-generation imipridone compounds (ONC206 and ONC212) in combination with genetic interference of HDAC1 and HDAC2 as well as with global (panobinostat) or selective (romidepsin) HDAC inhibitors caused synergistic reduction of viability in GBM model systems, which was mediated by interference with tricarboxylic acid cycle activity and GBM cell respiration. This effect was partially mediated by activation of apoptosis along with activation of caspases regulated chiefly by Bcl-xL and Mcl-1. Knockdown of the ClpP protease or ectopic expression of a ClpP D190A mutant substantially rescued from the inhibition of oxidative energy metabolism as well as from the reduction of cellular viability by ClpP activators and the combination treatment, respectively. Finally, utilizing GBM PDX models, we demonstrated that the combination treatment of HDAC inhibitors and imipridones prolonged host survival more potently than single treatments or vehicle in vivo. CONCLUSIONS: Collectively, these observations suggest that the efficacy of HDAC inhibitors might be significantly enhanced through ClpP activators in model systems of human GBM.


Subject(s)
Glioblastoma , Humans , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Endopeptidase Clp/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Peptide Hydrolases/genetics , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays
5.
J Neurol ; 269(6): 2854-2861, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34999962

ABSTRACT

Adult polyglucosan body disease (APBD) is a rare but probably underdiagnosed autosomal recessive neurodegenerative disorder due to pathogenic variants in GBE1. The phenotype is characterized by neurogenic bladder dysfunction, spastic paraplegia, and axonal neuropathy. Additionally, cognitive symptoms and dementia have been reported in APBD but have not been studied systematically. Using exome sequencing, we identified two previously unreported bi-allelic missense GBE1 variants in a patient with severe memory impairment along with the typical non-cognitive symptoms. We were able to confirm a reduction of GBE1 activity in blood lymphocytes. To characterize the neuropsychological profile of patients suffering from APBD, we conducted a systematic review of cognitive impairment in this rare disease. Analysis of 24 cases and case series (in total 58 patients) showed that executive deficits and memory impairment are the most common cognitive symptoms in APBD.


Subject(s)
Cognitive Dysfunction , Glycogen Storage Disease , Nervous System Diseases , Cognitive Dysfunction/genetics , Glycogen Storage Disease/genetics , Humans , Mutation, Missense
6.
Nat Commun ; 12(1): 5203, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471141

ABSTRACT

Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was accompanied by an increase of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Combining AURKA inhibitors with inhibitors of FAO extends overall survival in orthotopic GBM PDX models. Taken together, these data suggest that simultaneous targeting of oxidative metabolism and AURKAi might be a potential novel therapy against recalcitrant malignancies.


Subject(s)
Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Warburg Effect, Oncologic , Cell Line, Tumor , Cell Proliferation , Fatty Acids/metabolism , Glycolysis/drug effects , Humans , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proteomics , Signal Transduction/drug effects , Transcriptome , Warburg Effect, Oncologic/drug effects
7.
EMBO Mol Med ; 13(10): e14554, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34486811

ABSTRACT

This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.


Subject(s)
Glycogen Storage Disease , Nervous System Diseases , Animals , Glucans , Glycogen , Mice
8.
Ann Neurol ; 90(4): 640-652, 2021 10.
Article in English | MEDLINE | ID: mdl-34338329

ABSTRACT

OBJECTIVE: Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS: We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS: AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION: Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021;90:640-652.


Subject(s)
Genetic Therapy , Mitochondria/metabolism , Mitochondrial Myopathies/therapy , Thymidine Kinase/deficiency , Animals , Compassionate Use Trials , DNA, Mitochondrial/genetics , Humans , Mice , Mitochondria/genetics , Mitochondrial Myopathies/genetics , Mutation/genetics , Thymidine/genetics , Thymidine/metabolism , Thymidine Kinase/genetics
9.
J Inherit Metab Dis ; 44(3): 534-543, 2021 05.
Article in English | MEDLINE | ID: mdl-33141444

ABSTRACT

Adult polyglucosan body disease (APBD) represents a complex autosomal recessive inherited neurometabolic disorder due to homozygous or compound heterozygous pathogenic variants in GBE1 gene, resulting in deficiency of glycogen-branching enzyme and secondary storage of glycogen in the form of polyglucosan bodies, involving the skeletal muscle, diaphragm, peripheral nerve (including autonomic fibers), brain white matter, spinal cord, nerve roots, cerebellum, brainstem and to a lesser extent heart, lung, kidney, and liver cells. The diversity of new clinical presentations regarding neuromuscular involvement is astonishing and transformed APBD in a key differential diagnosis of completely different clinical conditions, including axonal and demyelinating sensorimotor polyneuropathy, progressive spastic paraparesis, motor neuronopathy presentations, autonomic disturbances, leukodystrophies or even pure myopathic involvement with limb-girdle pattern of weakness. This review article aims to summarize the main clinical, biochemical, genetic, and diagnostic aspects regarding APBD with special focus on neuromuscular presentations.


Subject(s)
Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease/genetics , Glycogen Storage Disease/physiopathology , Nervous System Diseases/genetics , Nervous System Diseases/physiopathology , Adult , Brain/pathology , Glycogen Storage Disease/pathology , Humans , Muscle, Skeletal/pathology , Nervous System Diseases/pathology , Peripheral Nerves/pathology , Phenotype , Spinal Cord/pathology
11.
EBioMedicine ; 46: 356-367, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31383553

ABSTRACT

BACKGROUND: TK2 is a nuclear gene encoding the mitochondrial matrix protein thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial nucleotide salvage pathway. Deficiency of TK2 activity causes mitochondrial DNA (mtDNA) depletion, which in humans manifests predominantly as a mitochondrial myopathy with onset typically in infancy and childhood. We previously showed that oral treatment of the Tk2 H126N knock-in mouse model (Tk2-/-) with the TK2 substrates, deoxycytidine (dCtd) and thymidine (dThd), delayed disease onset and prolonged median survival by 3-fold. Nevertheless, dCtd + dThd treated Tk2-/- mice showed mtDNA depletion in brain as early as postnatal day 13 and in virtually all other tissues at age 29 days. METHODS: To enhance mechanistic understanding and efficacy of dCtd + dThd therapy, we studied the bioavailability of dCtd and dThd in various tissues as well as levels of the cytosolic enzymes, TK1 and dCK that convert the deoxynucleosides into dCMP and dTMP. FINDINGS: Parenteral treatment relative to oral treatment produced higher levels of dCtd and dThd and improved mtDNA levels in liver and heart, but did not ameliorate molecular defects in brain or prolong survival. Down-regulation of TK1 correlated with temporal- and tissue-specificity of response to dCtd + dThd. Finally, we observed in human infant and adult muscle expression of TK1 and dCK, which account for the long-term efficacy to dCtd + dThd therapy in TK2 deficient patients. INTERPRETATIONS: These data indicate that the cytosolic pyrimidine salvage pathway enzymes TK1 and dCK are critical for therapeutic efficacy of deoxynucleoside therapy for Tk2 deficiency. FUND: National Institutes of Health P01HD32062.


Subject(s)
Deoxyribonucleosides/pharmacology , Thymidine Kinase/deficiency , Animals , Biological Availability , Blood-Brain Barrier/metabolism , DNA, Mitochondrial , Deoxyribonucleosides/pharmacokinetics , Disease Models, Animal , Enzyme Activation/drug effects , Humans , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Organ Specificity , Oxidative Phosphorylation , Phenotype , Thymidine Kinase/genetics , Thymidine Kinase/metabolism
12.
Hum Mol Genet ; 27(19): 3305-3312, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29917077

ABSTRACT

Leigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease. We report four Leigh syndrome subjects from three unrelated Ashkenazi Jewish families harboring a homozygous splice-site mutation (c.87 + 1G>C) in a novel CV subunit disease gene, USMG5. The Ashkenazi population allele frequency is 0.57%. This mutation produces two USMG5 transcripts, wild-type and lacking exon 3. Fibroblasts from two Leigh syndrome probands had reduced wild-type USMG5 mRNA expression and undetectable protein. The mutation did not alter monomeric CV expression, but reduced both CV dimer expression and ATP synthesis rate. Rescue with wild-type USMG5 cDNA in proband fibroblasts restored USMG5 protein, increased CV dimerization and enhanced ATP production rate. These data demonstrate that a recurrent USMG5 splice-site founder mutation in the Ashkenazi Jewish population causes autosomal recessive Leigh syndrome by reduction of CV dimerization and ATP synthesis.


Subject(s)
Leigh Disease/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Adenosine Triphosphate/biosynthesis , Child , Child, Preschool , Dimerization , Exons/genetics , Founder Effect , Gene Frequency , Haplotypes , Humans , Infant , Infant, Newborn , Jews/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Male , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mutation , Oxidative Phosphorylation , RNA Splice Sites/genetics , Exome Sequencing
13.
Muscle Nerve ; 53(6): 976-81, 2016 06.
Article in English | MEDLINE | ID: mdl-26789422

ABSTRACT

INTRODUCTION: Adult polyglucosan body disease (APBD) usually presents with progressive spastic paraparesis, neurogenic bladder, and distal lower limb sensory abnormalities. It is caused by mutations in the glycogen branching enzyme gene (GBE1). METHODS: We describe a woman with an unusual phenotype manifesting as progressive left brachial more than lumbosacral plexopathies, with central sensory and corticospinal tract involvement. RESULTS: Magnetic resonance imaging of the brain and cervical spine showed abnormal T2 signal within the ventral pons and medulla bilaterally, involving the pyramidal tracts and the medial leminisci. There was also medullary and cervical spine atrophy. On nerve biopsy, large polyglucosan bodies were noted in the endoneurium. The patient was found to be compound heterozygous for 2 novel mutations in GBE1. Peripheral blood leukocyte GBE activity was markedly reduced to 7% of normal, confirming the diagnosis of APBD. CONCLUSIONS: In this report we describe a new phenotype of APBD associated with 2 novel mutations. Muscle Nerve 53: 976-981, 2016.


Subject(s)
Disease Progression , Functional Laterality/physiology , Glycogen Storage Disease/physiopathology , Nervous System Diseases/physiopathology , Neural Conduction/physiology , DNA Mutational Analysis , Female , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease/diagnostic imaging , Glycogen Storage Disease/genetics , Humans , Magnetic Resonance Imaging , Middle Aged , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/genetics , RNA, Messenger/metabolism , Reaction Time/physiology , Sural Nerve/pathology
14.
Hum Mol Genet ; 24(3): 714-26, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25274776

ABSTRACT

A member of the four-and-a-half-LIM (FHL) domain protein family, FHL1, is highly expressed in human adult skeletal and cardiac muscle. Mutations in FHL1 have been associated with diverse X-linked muscle diseases: scapuloperoneal (SP) myopathy, reducing body myopathy, X-linked myopathy with postural muscle atrophy, rigid spine syndrome (RSS) and Emery-Dreifuss muscular dystrophy. In 2008, we identified a missense mutation in the second LIM domain of FHL1 (c.365 G>C, p.W122S) in a family with SP myopathy. We generated a knock-in mouse model harboring the c.365 G>C Fhl1 mutation and investigated the effects of this mutation at three time points (3-5 months, 7-10 months and 18-20 months) in hemizygous male and heterozygous female mice. Survival was comparable in mutant and wild-type animals. We observed decreased forelimb strength and exercise capacity in adult hemizygous male mice starting from 7 to 10 months of age. Western blot analysis showed absence of Fhl1 in muscle at later stages. Thus, adult hemizygous male, but not heterozygous female, mice showed a slowly progressive phenotype similar to human patients with late-onset muscle weakness. In contrast to SP myopathy patients with the FHL1 W122S mutation, mutant mice did not manifest cytoplasmic inclusions (reducing bodies) in muscle. Because muscle weakness was evident prior to loss of Fhl1 protein and without reducing bodies, our findings indicate that loss of function is responsible for the myopathy in the Fhl1 W122S knock-in mice.


Subject(s)
Forelimb/pathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Emery-Dreifuss/pathology , Myocardium/pathology , Age of Onset , Animals , Disease Models, Animal , Female , Gene Knock-In Techniques , Hemizygote , Heterozygote , Humans , Male , Mice , Mice, Inbred C57BL , Muscular Dystrophy, Emery-Dreifuss/epidemiology , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/metabolism , Mutation, Missense
15.
Muscle Nerve ; 51(4): 609-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25287355

ABSTRACT

INTRODUCTION: The PNPLA2 gene encodes the enzyme adipose triglyceride lipase (ATGL), which catalyzes the first step of triglyceride hydrolysis. Mutations in this gene are associated with an autosomal recessive lipid-storage myopathy, neutral lipid-storage disease with myopathy (NLSD-M). RESULTS: A 72-year-old woman had late-onset myopathy, with mild weakness, cramps, and exercise intolerance. Electromyography showed myotonic discharges. A few leukocytes showed lipid droplets (Jordan anomaly). Deltoid and quadriceps muscle biopsies showed no lipid storage. Genetic analysis of PNPLA2 detected 2 heterozygous mutations: c.497A>G (p.Asp166Gly) in exon 5 and c.1442C>T (p.Pro481Leu) in exon 10. Expression of mutant PNPLA2 plasmids in HeLa cells resulted in impaired enzyme activity, confirming the pathological effects of the mutations. CONCLUSIONS: In this case of NLSD-M, the myopathy may be due to a metabolic defect rather than to a mechanical effect of lipid storage. This suggests that more than 1 mechanism contributes to muscle damage in NLSD-M.


Subject(s)
Lipase/genetics , Lipid Metabolism, Inborn Errors/genetics , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Dystrophies/genetics , Mutation/genetics , Aged , Biopsy , Female , Heterozygote , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Muscular Diseases/diagnosis , Muscular Dystrophies/diagnosis
16.
EMBO Mol Med ; 6(8): 1016-27, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24968719

ABSTRACT

Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2(-/-) mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2(-/-200dCMP/) (dTMP)) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency.


Subject(s)
Mitochondrial Diseases/drug therapy , Thymidine Kinase/deficiency , Thymidine Monophosphate/therapeutic use , Animals , Deoxycytidine Monophosphate/therapeutic use , Gene Knock-In Techniques , Mice , Survival Analysis , Treatment Outcome
17.
JAMA Neurol ; 71(1): 41-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24248152

ABSTRACT

IMPORTANCE: The neuromuscular presentation of glycogen branching enzyme deficiency includes a severe infantile form and a late-onset variant known as adult polyglucosan body disease. Herein, we describe 2 patients with adult acute onset of fluctuating neurological signs and brain magnetic resonance imaging lesions simulating multiple sclerosis. A better definition of this new clinical entity is needed to facilitate diagnosis. OBJECTIVES: To describe the clinical presentation and progression of a new intermediate variant of glycogen branching enzyme deficiency and to discuss genotype-phenotype correlations. DESIGN, SETTING, AND PARTICIPANTS: Clinical, biochemical, morphological, and molecular study of 2 patients followed up for 6 years and 8 years at academic medical centers. The participants were 2 patients of non-Ashkenazi descent with adult acute onset of neurological signs initially diagnosed as multiple sclerosis. MAIN OUTCOMES AND MEASURES: Clinical course, muscle and nerve morphology, longitudinal study of brain magnetic resonance imaging, and glycogen branching enzyme activity and GBE1 molecular analysis. RESULTS: Molecular analysis showed that one patient was homozygous (c.1544G>A) and the other patient was compound heterozygous (c.1544G>A and c.1961-1962delCA) for GBE1 mutations. Residual glycogen branching enzyme activity was 16% and 30% of normal in leukocytes. Both patients manifested acute episodes of transient neurological symptoms, and neurological impairment was mild at age 45 years and 53 years. Brain magnetic resonance imaging revealed nonprogressive white matter lesions and spinocerebellar atrophy similar to typical adult polyglucosan body disease. CONCLUSIONS AND RELEVANCE: GBE1 mutations can cause an early adult-onset relapsing-remitting form of polyglucosan body disease distinct from adult polyglucosan body disease in several ways, including younger age at onset, history of infantile liver involvement, and subacute and remitting course simulating multiple sclerosis. This should orient neurologists toward the correct diagnosis.


Subject(s)
Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/pathology , Acute Disease , Age of Onset , Disease Progression , Female , Follow-Up Studies , Genetic Carrier Screening , Glycogen Storage Disease Type IV/enzymology , Homozygote , Humans , Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Magnetic Resonance Imaging , Male , Middle Aged , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
19.
J Child Neurol ; 29(10): NP105-10, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24284231

ABSTRACT

We report an unusual case of Leigh syndrome due to the m.10191T>C mutation in the complex I gene MT-ND3. This mutation has been associated with a spectrum of clinical phenotypes ranging from infant lethality to adult onset. Despite infantile onset and severe symptoms, our patient has survived to early adulthood because of a strict dietary regimen and parental care. This patient is an extreme example of the frequently prolonged course of Leigh syndrome due to this particular mutation.


Subject(s)
Electron Transport Complex I/genetics , Leigh Disease/genetics , Adult , Female , Humans , Leigh Disease/physiopathology , Leigh Disease/therapy , Mutation , Phenotype
20.
Ann Neurol ; 74(6): 914-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23798481

ABSTRACT

Glycogen storage diseases are important causes of myopathy and cardiomyopathy. We describe 10 patients from 8 families with childhood or juvenile onset of myopathy, 8 of whom also had rapidly progressive cardiomyopathy, requiring heart transplant in 4. The patients were homozygous or compound heterozygous for missense or truncating mutations in RBCK1, which encodes for a ubiquitin ligase, and had extensive polyglucosan accumulation in skeletal muscle and in the heart in cases of cardiomyopathy. We conclude that RBCK1 deficiency is a frequent cause of polyglucosan storage myopathy associated with progressive muscle weakness and cardiomyopathy.


Subject(s)
Glycogen Storage Disease/enzymology , Glycogen Storage Disease/genetics , Muscular Diseases/enzymology , Muscular Diseases/genetics , Nervous System Diseases/enzymology , Nervous System Diseases/genetics , Transcription Factors/deficiency , Ubiquitin/genetics , Adolescent , Adult , Cardiomyopathies/enzymology , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Female , Genome, Human , Glycogen Storage Disease/complications , Humans , Male , Middle Aged , Muscle Weakness/enzymology , Muscle Weakness/etiology , Muscle Weakness/genetics , Muscular Diseases/etiology , Mutation, Missense/genetics , Nervous System Diseases/complications , Ubiquitin-Protein Ligases , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...