Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
J Endocr Soc ; 8(7): bvae103, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38867880

ABSTRACT

Context: The 2 peaks of type 1 diabetes incidence occur during early childhood and puberty. Objective: We sought to better understand the relationship between puberty, islet autoimmunity, and type 1 diabetes. Methods: The relationships between puberty, islet autoimmunity, and progression to type 1 diabetes were investigated prospectively in children followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Onset of puberty was determined by subject self-assessment of Tanner stages. Associations between speed of pubertal progression, pubertal growth, weight gain, homeostasis model assessment of insulin resistance (HOMA-IR), islet autoimmunity, and progression to type 1 diabetes were assessed. The influence of individual factors was analyzed using Cox proportional hazard ratios. Results: Out of 5677 children who were still in the study at age 8 years, 95% reported at least 1 Tanner Stage score and were included in the study. Children at puberty (Tanner Stage ≥2) had a lower risk (HR 0.65, 95% CI 0.45-0.93; P = .019) for incident autoimmunity than prepubertal children (Tanner Stage 1). An increase of body mass index Z-score was associated with a higher risk (HR 2.88, 95% CI 1.61-5.15; P < .001) of incident insulin autoantibodies. In children with multiple autoantibodies, neither HOMA-IR nor rate of progression to Tanner Stage 4 were associated with progression to type 1 diabetes. Conclusion: Rapid weight gain during puberty is associated with development of islet autoimmunity. Puberty itself had no significant influence on the appearance of autoantibodies or type 1 diabetes. Further studies are needed to better understand the underlying mechanisms.

2.
Diabetologia ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819466

ABSTRACT

AIMS/HYPOTHESIS: Delivery by Caesarean section continues to rise globally and has been associated with the risk of developing type 1 diabetes and the rate of progression from pre-symptomatic stage 1 or 2 type 1 diabetes to symptomatic stage 3 disease. The aim of this study was to examine the association between Caesarean delivery and progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. METHODS: Caesarean section was examined in 8135 children from the TEDDY study who had an increased genetic risk for type 1 diabetes and were followed from birth for the development of islet autoantibodies and type 1 diabetes. RESULTS: The likelihood of delivery by Caesarean section was higher in children born to mothers with type 1 diabetes (adjusted OR 4.61, 95% CI 3.60, 5.90, p<0.0001), in non-singleton births (adjusted OR 4.35, 95% CI 3.21, 5.88, p<0.0001), in premature births (adjusted OR 1.91, 95% CI 1.53, 2.39, p<0.0001), in children born in the USA (adjusted OR 2.71, 95% CI 2.43, 3.02, p<0.0001) and in children born to older mothers (age group >28-33 years: adjusted OR 1.19, 95% CI 1.04, 1.35, p=0.01; age group >33 years: adjusted OR 1.80, 95% CI 1.58, 2.06, p<0.0001). Caesarean section was not associated with an increased risk of developing pre-symptomatic early-stage type 1 diabetes (risk by age 10 years 5.7% [95% CI 4.6%, 6.7%] for Caesarean delivery vs 6.6% [95% CI 6.0%, 7.3%] for vaginal delivery, p=0.07). Delivery by Caesarean section was associated with a modestly increased rate of progression to stage 3 type 1 diabetes in children who had developed multiple islet autoantibody-positive pre-symptomatic early-stage type 1 diabetes (adjusted HR 1.36, 95% CI 1.03, 1.79, p=0.02). No interaction was observed between Caesarean section and non-HLA SNPs conferring susceptibility for type 1 diabetes. CONCLUSIONS/INTERPRETATION: Caesarean section increased the rate of progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. DATA AVAILABILITY: Data from the TEDDY study ( https://doi.org/10.58020/y3jk-x087 ) reported here will be made available for request at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repository (NIDDK-CR) Resources for Research (R4R) ( https://repository.niddk.nih.gov/ ).

3.
Eur J Nutr ; 63(4): 1329-1338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413484

ABSTRACT

PURPOSE: The aim was to study the association between dietary intake of B vitamins in childhood and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D) by the age of 10 years. METHODS: We followed 8500 T1D-susceptible children born in the U.S., Finland, Sweden, and Germany in 2004 -2010 from the Environmental Determinants of Diabetes in the Young (TEDDY) study, which is a prospective observational birth cohort. Dietary intake of seven B vitamins was calculated from foods and dietary supplements based on 24-h recall at 3 months and 3-day food records collected regularly from 6 months to 10 years of age. Cox proportional hazard models were adjusted for energy, HLA-genotype, first-degree relative with T1D, sex, and country. RESULTS: A total of 778 (9.2) children developed at least one autoantibody (any IA), and 335 (3.9%) developed multiple autoantibodies. 280 (3.3%) children had IAA and 319 (3.8%) GADA as the first autoantibody. 344 (44%) children with IA progressed to T1D. We observed that higher intake of niacin was associated with a decreased risk of developing multiple autoantibodies (HR 0.95; 95% CI 0.92, 0.98) per 1 mg/1000 kcal in niacin intake. Higher intake of pyridoxine (HR 0.66; 95% CI 0.46, 0.96) and vitamin B12 (HR 0.87; 95% CI 0.77, 0.97) was associated with a decreased risk of IAA-first autoimmunity. Higher intake of riboflavin (HR 1.38; 95% CI 1.05, 1.80) was associated with an increased risk of GADA-first autoimmunity. There were no associations between any of the B vitamins and the outcomes "any IA" and progression from IA to T1D.  CONCLUSION: In this multinational, prospective birth cohort of children with genetic susceptibility to T1D, we observed some direct and inverse associations between different B vitamins and risk of IA.


Subject(s)
Autoantibodies , Autoimmunity , Diabetes Mellitus, Type 1 , Islets of Langerhans , Vitamin B Complex , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/epidemiology , Male , Female , Vitamin B Complex/administration & dosage , Prospective Studies , Child , Child, Preschool , Infant , Islets of Langerhans/immunology , Autoantibodies/blood , Risk Factors , Diet/methods , Diet/statistics & numerical data , Proportional Hazards Models , United States/epidemiology , Finland/epidemiology , Sweden/epidemiology , Germany/epidemiology , Dietary Supplements , Birth Cohort , Disease Progression
4.
Am J Clin Nutr ; 118(6): 1099-1105, 2023 12.
Article in English | MEDLINE | ID: mdl-38044022

ABSTRACT

BACKGROUND: Higher gluten intake in childhood is associated with increased incidence of celiac disease autoimmunity (CDA) and celiac disease. It remains to be studied whether different dietary patterns independent of gluten intake contribute to the incidence. OBJECTIVES: This study aimed to explore associations of dietary patterns by age 2 y with risk of CDA and celiac disease in genetically susceptible children. METHODS: Data was used from 6726 participants at genetic risk of type 1 diabetes and celiac disease enrolled in the observational cohort, The Environmental Determinants of Diabetes in the Young (TEDDY) study. Children were annually screened for tissue transglutaminase autoantibodies (tTGAs) from age 2 y. Principal component analysis extracted dietary patterns, based on intake of 27 food groups assessed by 3-d food records at age 9 to 24 mo. The primary outcome was CDA (i.e., persistently tTGA-positive in at least 2 consecutive samples), and the secondary outcome was celiac disease. During follow-up to mean age 11.0 (standard deviation 3.6) y, 1296 (19.3%) children developed CDA, and 529 (7.9%) were diagnosed with celiac disease. Associations of adherence to dietary patterns (per 5-unit increase) with the study outcomes were estimated by Cox regression models adjusted for risk factors including gluten intake. RESULTS: At age 9 mo, a dietary pattern higher in the food groups vegetable fats and milk was associated with reduced risk of CDA (hazard ratio [HR]: 0.88; 95% confidence interval [CI]: 0.79, 0.98; P = 0.02). At 24 mo, a dietary pattern higher in the food groups wheat, vegetable fats, and juices, and lower in milk, meat, and oats at age 24 mo was associated with increased risk of CDA (HR: 1.18; 95% CI: 1.05, 1.33; P < 0.001) and celiac disease (HR: 1.24; 95% CI: 1.03, 1.50; P = 0.03). CONCLUSIONS: Dietary patterns in early childhood are associated with risk of CDA and celiac disease in genetically predisposed children, independent of gluten intake.


Subject(s)
Celiac Disease , Child , Humans , Child, Preschool , Adolescent , Young Adult , Adult , Infant , Celiac Disease/etiology , Autoimmunity , Transglutaminases/genetics , Autoantibodies/genetics , Genetic Predisposition to Disease , Glutens/adverse effects
6.
Diabetes Care ; 46(10): 1839-1847, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37579501

ABSTRACT

OBJECTIVE: To study the interaction among HLA genotype, early probiotic exposure, and timing of complementary foods in relation to risk of islet autoimmunity (IA). RESEARCH DESIGN AND METHODS: The Environmental Determinants of Diabetes in the Young (TEDDY) study prospectively follows 8,676 children with increased genetic risk of type 1 diabetes. We used a Cox proportional hazards regression model adjusting for potential confounders to study early feeding and the risk of IA in a sample of 7,770 children. RESULTS: Any solid food introduced early (<6 months) was associated with increased risk of IA if the child had the HLA DR3/4 genotype and no probiotic exposure during the 1st year of life. Rice introduced at 4-5.9 months compared with later in the U.S. was associated with an increased risk of IA. CONCLUSIONS: Timing of solid food introduction, including rice, may be associated with IA in children with the HLA DR3/4 genotype not exposed to probiotics. The microbiome composition under these exposure combinations requires further study.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Infant , Autoantibodies/genetics , Autoimmunity/genetics , Genetic Predisposition to Disease , Genotype , HLA-DR3 Antigen/genetics , Risk Factors
7.
Pediatr Diabetes ; 20232023.
Article in English | MEDLINE | ID: mdl-37614409

ABSTRACT

Background/Objective: Growth and obesity have been associated with increased risk of islet autoimmunity (IA) and progression to type 1 diabetes. We aimed to estimate the effect of energy-yielding macronutrient intake on the development of IA through BMI. Research Design and Methods: Genetically at-risk children (n = 5,084) in Finland, Germany, Sweden, and the USA, who were autoantibody negative at 2 years of age, were followed to the age of 8 years, with anthropometric measurements and 3-day food records collected biannually. Of these, 495 (9.7%) children developed IA. Mediation analysis for time-varying covariates (BMI z-score) and exposure (energy intake) was conducted. Cox proportional hazard method was used in sensitivity analysis. Results: We found an indirect effect of total energy intake (estimates: indirect effect 0.13 [0.05, 0.21]) and energy from protein (estimates: indirect effect 0.06 [0.02, 0.11]), fat (estimates: indirect effect 0.03 [0.01, 0.05]), and carbohydrates (estimates: indirect effect 0.02 [0.00, 0.04]) (kcal/day) on the development of IA. A direct effect was found for protein, expressed both as kcal/day (estimates: direct effect 1.09 [0.35, 1.56]) and energy percentage (estimates: direct effect 72.8 [3.0, 98.0]) and the development of GAD autoantibodies (GADA). In the sensitivity analysis, energy from protein (kcal/day) was associated with increased risk for GADA, hazard ratio 1.24 (95% CI: 1.09, 1.53), p = 0.042. Conclusions: This study confirms that higher total energy intake is associated with higher BMI, which leads to higher risk of the development of IA. A diet with larger proportion of energy from protein has a direct effect on the development of GADA.


Subject(s)
Autoimmunity , Mediation Analysis , Child , Humans , Body Mass Index , Eating , Energy Intake , Autoantibodies
8.
Diabetes Care ; 46(11): 1908-1915, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37607456

ABSTRACT

OBJECTIVE: To investigate gastrointestinal infection episodes (GIEs) in relation to the appearance of islet autoantibodies in The Environmental Determinants of Diabetes in the Young (TEDDY) cohort. RESEARCH DESIGN AND METHODS: GIEs on risk of autoantibodies against either insulin (IAA) or GAD (GADA) as the first-appearing autoantibody were assessed in a 10-year follow-up of 7,867 children. Stool virome was characterized in a nested case-control study. RESULTS: GIE reports (odds ratio [OR] 2.17 [95% CI 1.39-3.39]) as well as Norwalk viruses found in stool (OR 5.69 [1.36-23.7]) at <1 year of age were associated with an increased IAA risk at 2-4 years of age. GIEs reported at age 1 to <2 years correlated with a lower risk of IAA up to 10 years of age (OR 0.48 [0.35-0.68]). GIE reports at any other age were associated with an increase in IAA risk (OR 2.04 for IAA when GIE was observed 12-23 months prior [1.41-2.96]). Impacts on GADA risk were limited to GIEs <6 months prior to autoantibody development in children <4 years of age (OR 2.16 [1.54-3.02]). CONCLUSIONS: Bidirectional associations were observed. GIEs were associated with increased IAA risk when reported before 1 year of age or 12-23 months prior to IAA. Norwalk virus was identified as one possible candidate factor. GIEs reported during the 2nd year of life were associated with a decreased IAA risk.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Infant , Child, Preschool , Autoantibodies , Case-Control Studies , Insulin , Insulin Antibodies , Glutamate Decarboxylase
9.
Cell Rep Med ; 4(7): 101093, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37390828

ABSTRACT

Type 1 diabetes (T1D) results from autoimmune destruction of ß cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 1/diagnosis , Autoimmunity , Autoantibodies , Biomarkers
10.
J Intern Med ; 294(2): 145-158, 2023 08.
Article in English | MEDLINE | ID: mdl-37143363

ABSTRACT

The etiology of type 1 diabetes (T1D) foreshadows the pancreatic islet beta-cell autoimmune pathogenesis that heralds the clinical onset of T1D. Standardized and harmonized tests of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and ZnT8 transporter (ZnT8A) allowed children to be followed from birth until the appearance of a first islet autoantibody. In the Environmental Determinants of Diabetes in the Young (TEDDY) study, a multicenter (Finland, Germany, Sweden, and the United States) observational study, children were identified at birth for the T1D high-risk HLA haploid genotypes DQ2/DQ8, DQ2/DQ2, DQ8/DQ8, and DQ4/DQ8. The TEDDY study was preceded by smaller studies in Finland, Germany, Colorado, Washington, and Sweden. The aims were to follow children at increased genetic risk to identify environmental factors that trigger the first-appearing autoantibody (etiology) and progress to T1D (pathogenesis). The larger TEDDY study found that the incidence rate of the first-appearing autoantibody was split into two patterns. IAA first peaked already during the first year of life and tapered off by 3-4 years of age. GADA first appeared by 2-3 years of age to reach a plateau by about 4 years. Prior to the first-appearing autoantibody, genetic variants were either common or unique to either pattern. A split was also observed in whole blood transcriptomics, metabolomics, dietary factors, and exposures such as gestational life events and early infections associated with prolonged shedding of virus. An innate immune reaction prior to the adaptive response cannot be excluded. Clarifying the mechanisms by which autoimmunity is triggered to either insulin or GAD65 is key to uncovering the etiology of autoimmune T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Infant, Newborn , Humans , Diabetes Mellitus, Type 1/genetics , Autoimmunity , Autoantibodies , Insulin , Observational Studies as Topic , Multicenter Studies as Topic
11.
Diabetes Care ; 46(7): 1409-1416, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37141102

ABSTRACT

OBJECTIVE: This study investigated physical activity and its association with the development of islet autoimmunity and type 1 diabetes in genetically at-risk children aged 5-15 years. RESEARCH DESIGN AND METHODS: As part of the longitudinal Environmental Determinants of Diabetes in the Young (TEDDY) study, annual assessment of activity using accelerometry was conducted from age 5 years. Time-to-event analyses using Cox proportional hazard models were used to assess the association between time spent in moderate to vigorous physical activity per day and the appearance of one or several autoantibodies and progression to type 1 diabetes in three risk groups: 1) 3,869 islet autoantibody (IA)-negative children, of whom 157 became single IA positive; 2) 302 single IA-positive children, of whom 73 became multiple IA positive; and 3) 294 multiple IA-positive children, of whom 148 developed type 1 diabetes. RESULTS: No significant association was found in risk group 1 or risk group 2. A significant association was seen in risk group 3 (hazard ratio 0.920 [95% CI 0.856, 0.988] per 10-min increase; P = 0.021), particularly when glutamate decarboxylase autoantibody was the first autoantibody (hazard ratio 0.883 [95% CI 0.783, 0.996] per 10-min increase; P = 0.043). CONCLUSIONS: More daily minutes spent in moderate to vigorous physical activity was associated with a reduced risk of progression to type 1 diabetes in children aged 5-15 years who had developed multiple IAs.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Infant , Child, Preschool , Adolescent , Diabetes Mellitus, Type 1/epidemiology , Autoimmunity , Autoantibodies , Exercise
12.
Diabetes Care ; 46(5): 1014-1018, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36867433

ABSTRACT

OBJECTIVE: To examine whether iron intake and genetically determined iron overload interact in predisposing to the development of childhood islet autoimmunity (IA) and type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: In The Environmental Determinants of Diabetes in the Young (TEDDY) study, 7,770 genetically high-risk children were followed from birth until the development of IA and progression to T1D. Exposures included energy-adjusted iron intake in the first 3 years of life and a genetic risk score (GRS) for increased circulating iron. RESULTS: We found a U-shaped association between iron intake and risk of GAD antibody as the first autoantibody. In children with GRS ≥2 iron risk alleles, high iron intake was associated with an increased risk of IA, with insulin as first autoantibody (adjusted hazard ratio 1.71 [95% CI 1.14; 2.58]) compared with moderate iron intake. CONCLUSIONS: Iron intake may alter the risk of IA in children with high-risk HLA haplogenotypes.


Subject(s)
Diabetes Mellitus, Type 1 , Iron Overload , Islets of Langerhans , Child , Humans , Infant , Autoimmunity/genetics , Iron, Dietary , Iron , Risk Factors , Autoantibodies/genetics , Iron Overload/genetics , Genetic Predisposition to Disease
13.
Cell Metab ; 35(4): 695-710.e6, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36963395

ABSTRACT

Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP's comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Access to Information , Prospective Studies , Genomics/methods , Phenotype
14.
Diabetologia ; 66(5): 897-912, 2023 05.
Article in English | MEDLINE | ID: mdl-36759347

ABSTRACT

AIMS/HYPOTHESIS: The Islet Autoantibody Standardization Program (IASP) aims to improve the performance of immunoassays measuring autoantibodies in type 1 diabetes and the concordance of results across laboratories. IASP organises international workshops distributing anonymised serum samples to participating laboratories and centralises the collection and analysis of results. In this report, we describe the results of assays measuring IAA submitted to the IASP 2018 and 2020 workshops. METHODS: The IASP distributed uniquely coded sera from individuals with new-onset type 1 diabetes, multiple islet autoantibody-positive individuals, and diabetes-free blood donors in both 2018 and 2020. Serial dilutions of the anti-insulin mouse monoclonal antibody HUI-018 were also included. Sensitivity, specificity, area under the receiver operating characteristic curve (ROC-AUC), partial ROC-AUC at 95% specificity (pAUC95) and concordance of qualitative/quantitative results were compared across assays. RESULTS: Results from 45 IAA assays of seven different formats and from 37 IAA assays of six different formats were submitted to the IASP in 2018 and 2020, respectively. The median ROC-AUC was 0.736 (IQR 0.617-0.803) and 0.790 (IQR 0.730-0.836), while the median pAUC95 was 0.016 (IQR 0.004-0.021) and 0.023 (IQR 0.014-0.026) in the 2018 and 2020 workshops, respectively. Assays largely differed in AUC (IASP 2018 range 0.232-0.874; IASP 2020 range 0.379-0.924) and pAUC95 (IASP 2018 and IASP 2020 range 0-0.032). CONCLUSIONS/INTERPRETATION: Assay formats submitted to this study showed heterogeneous performance. Despite the high variability across laboratories, the in-house radiobinding assay (RBA) remains the gold standard for IAA measurement. However, novel non-radioactive IAA immunoassays showed a good performance and, if further improved, might be considered valid alternatives to RBAs.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Animals , Mice , Sensitivity and Specificity , ROC Curve , Insulin Antibodies , Reference Standards , Glutamate Decarboxylase
15.
PLoS One ; 18(2): e0275123, 2023.
Article in English | MEDLINE | ID: mdl-36730234

ABSTRACT

BACKGROUND: Celiac disease has an increasing incidence worldwide and is treated with lifelong adherence to a gluten-free diet. We aimed to describe gluten-free diet adherence rates in children with screening-identified celiac disease, determine adherence-related factors, and compare adherence to food records in a multinational prospective birth cohort study. METHODS: Children in The Environmental Determinants of Diabetes in the Young study with celiac disease were included. Subjects had at least annual measurement of adherence (parent-report) and completed 3-day food records. Descriptive statistics, t-tests, Kruskal-Wallis tests and multivariable logistic and linear regression were employed. RESULTS: Two hundred ninety (73%) and 199 (67%) of subjects were always adherent to a gluten-free diet at 2 and 5 years post celiac disease diagnosis respectively. The percentage of children with variable adherence increased from 1% at 2 years to 15% at 5 years. Children with a first-degree relative with celiac disease were more likely to be adherent to the gluten-free diet. Gluten intake on food records could not differentiate adherent from nonadherent subjects. Adherent children from the United States had more gluten intake based on food records than European children (P < .001 and P = .007 at 2 and 5 years respectively). CONCLUSION: Approximately three-quarters of children with screening-identified celiac disease remain strictly adherent to a gluten-free diet over time. There are no identifiable features associated with adherence aside from having a first-degree relative with celiac disease. Despite good parent-reported adherence, children from the United States have more gluten intake when assessed by food records. Studies on markers of gluten-free diet adherence, sources of gluten exposure (particularly in the United States), and effects of adherence on mucosal healing are needed.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Patient Compliance , Child , Humans , Celiac Disease/therapy , Glutens , Prospective Studies
16.
Diabetes Care ; 45(10): 2271-2281, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36150053

ABSTRACT

OBJECTIVE: To distinguish among predictors of seroconversion, progression to multiple autoantibodies and from multiple autoantibodies to type 1 diabetes in young children. RESEARCH DESIGN AND METHODS: Genetically high-risk newborns (n = 8,502) were followed for a median of 11.2 years (interquartile range 9.3-12.6); 835 (9.8%) developed islet autoantibodies and 283 (3.3%) were diagnosed with type 1 diabetes. Predictors were examined using Cox proportional hazards models. RESULTS: Predictors of seroconversion and progression differed, depending on the type of first appearing autoantibody. Male sex, Finnish residence, having a sibling with type 1 diabetes, the HLA DR4 allele, probiotic use before age 28 days, and single nucleotide polymorphism (SNP) rs689_A (INS) predicted seroconversion to IAA-first (having islet autoantibody to insulin as the first appearing autoantibody). Increased weight at 12 months and SNPs rs12708716_G (CLEC16A) and rs2292239_T (ERBB3) predicted GADA-first (autoantibody to GAD as the first appearing). For those having a father with type 1 diabetes, the SNPs rs2476601_A (PTPN22) and rs3184504_T (SH2B3) predicted both. Younger age at seroconversion predicted progression from single to multiple autoantibodies as well as progression to diabetes, except for those presenting with GADA-first. Family history of type 1 diabetes and the HLA DR4 allele predicted progression to multiple autoantibodies but not diabetes. Sex did not predict progression to multiple autoantibodies, but males progressed more slowly than females from multiple autoantibodies to diabetes. SKAP2 and MIR3681HG SNPs are newly reported to be significantly associated with progression from multiple autoantibodies to type 1 diabetes. CONCLUSIONS: Predictors of IAA-first versus GADA-first autoimmunity differ from each other and from the predictors of progression to diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Autoantibodies/genetics , Autoimmunity/genetics , Diabetes Mellitus, Type 1/diagnosis , Disease Progression , Female , Finland , Genetic Predisposition to Disease , Genotype , HLA-DR4 Antigen , Humans , Infant, Newborn , Insulin , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 22
17.
Diabetes Care ; 45(10): 2342-2349, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36150054

ABSTRACT

OBJECTIVE: Biomarkers predicting risk of type 1 diabetes (stage 3) among children with islet autoantibodies are greatly needed to prevent diabetic ketoacidosis and facilitate prevention therapies. RESEARCH DESIGN AND METHODS: Children in the prospective The Environmental Determinants of Diabetes in the Young (TEDDY) study (n = 707) with confirmed diabetes-associated autoantibodies (GAD antibody, IA-2A, and/or insulin autoantibody) and two or more HbA1c measurements were followed to diabetes or median age 11.1 years. Once confirmed autoantibody positive, HbA1c was measured quarterly. Cox models and receiver operative characteristic curve analyses revealed the prognostic utility for risk of stage 3 on a relative HbA1c increase from the baseline visit or an oral glucose tolerance test (OGTT) 2-h plasma glucose (2-hPG). This HbA1c approach was then validated in the Type 1 Diabetes TrialNet Pathway to Prevention Study (TrialNet) (n = 1,190). RESULTS: A 10% relative HbA1c increase from baseline best marked the increased risk of stage 3 in TEDDY (74% sensitive; 88% specific). Significant predictors of risk for HbA1c change were age and HbA1c at the baseline test, genetic sex, maximum number of autoantibodies, and maximum rate of HbA1c increase by time of change. The multivariable model featuring a HbA1c ≥10% increase and these additional factors revealed increased risk of stage 3 in TEDDY (hazard ratio [HR] 12.74, 95% CI 8.7-18.6, P < 0.0001) and TrialNet (HR 5.09, 95% CI 3.3-7.9, P < 0.0001). Furthermore, the composite model using HbA1c ≥10% increase performed similarly to an OGTT 2-hPG composite model (TEDDY area under the curve [AUC] 0.88 and 0.85, respectively) and to the HbA1c model in TrialNet (AUC 0.82). CONCLUSIONS: An increase of ≥10% in HbA1c from baseline is as informative as OGTT 2-hPG in predicting risk of stage 3 in youth with genetic risk and diabetes-associated autoantibodies.


Subject(s)
Diabetes Mellitus, Type 1 , Glycated Hemoglobin , Autoantibodies , Biomarkers , Blood Glucose/analysis , Child , Diabetes Mellitus, Type 1/diagnosis , Disease Progression , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Humans , Insulins , Prospective Studies
18.
Pediatr Diabetes ; 23(8): 1586-1593, 2022 12.
Article in English | MEDLINE | ID: mdl-36082496

ABSTRACT

OBJECTIVE: Increased level of glycated hemoglobin (HbA1c) is associated with type 1 diabetes onset that in turn is preceded by one to several autoantibodies against the pancreatic islet beta cell autoantigens; insulin (IA), glutamic acid decarboxylase (GAD), islet antigen-2 (IA-2) and zinc transporter 8 (ZnT8). The risk for type 1 diabetes diagnosis increases by autoantibody number. Biomarkers predicting the development of a second or a subsequent autoantibody and type 1 diabetes are needed to predict disease stages and improve secondary prevention trials. This study aimed to investigate whether HbA1c possibly predicts the progression from first to a subsequent autoantibody or type 1 diabetes in healthy children participating in the Environmental Determinants of Diabetes in the Young (TEDDY) study. RESEARCH DESIGN AND METHODS: A joint model was designed to assess the association of longitudinal HbA1c levels with the development of first (insulin or GAD autoantibodies) to a second, second to third, third to fourth autoantibody or type 1 diabetes in healthy children prospectively followed from birth until 15 years of age. RESULTS: It was found that increased levels of HbA1c were associated with a higher risk of type 1 diabetes (HR 1.82, 95% CI [1.57-2.10], p < 0.001) regardless of first appearing autoantibody, autoantibody number or type. A decrease in HbA1c levels was associated with the development of IA-2A as a second autoantibody following GADA (HR 0.85, 95% CI [0.75, 0.97], p = 0.017) and a fourth autoantibody following GADA, IAA and ZnT8A (HR 0.90, 95% CI [0.82, 0.99], p = 0.036). HbA1c trajectory analyses showed a significant increase of HbA1c over time (p < 0.001) and that the increase is more rapid as the number of autoantibodies increased from one to three (p < 0.001). CONCLUSION: In conclusion, increased HbA1c is a reliable time predictive marker for type 1 diabetes onset. The increased rate of increase of HbA1c from first to third autoantibody and the decrease in HbA1c predicting the development of IA-2A are novel findings proving the link between HbA1c and the appearance of autoantibodies.


Subject(s)
Diabetes Mellitus, Type 1 , Glycated Hemoglobin , Child , Humans , Autoantibodies/blood , Autoantibodies/chemistry , Biomarkers , Diabetes Mellitus, Type 1/diagnosis , Glutamate Decarboxylase/immunology , Glycated Hemoglobin/chemistry , Insulin/metabolism
19.
Nat Commun ; 13(1): 3151, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672407

ABSTRACT

Fungal infections are a major health problem that often begin in the gastrointestinal tract. Gut microbe interactions in early childhood are critical for proper immune responses, yet there is little known about the development of the fungal population from infancy into childhood. Here, as part of the TEDDY (The Environmental Determinants of Diabetes in the Young) study, we examine stool samples of 888 children from 3 to 48 months and find considerable differences between fungi and bacteria. The metagenomic relative abundance of fungi was extremely low but increased while weaning from milk and formula. Overall fungal diversity remained constant over time, in contrast with the increase in bacterial diversity. Fungal profiles had high temporal variation, but there was less variation from month-to-month in an individual than among different children of the same age. Fungal composition varied with geography, diet, and the use of probiotics. Multiple Candida spp. were at higher relative abundance in children than adults, while Malassezia and certain food-associated fungi were lower in children. There were only subtle fungal differences associated with the subset of children that developed islet autoimmunity or type 1 diabetes. Having proper fungal exposures may be crucial for children to establish appropriate responses to fungi and limit the risk of infection: the data here suggests those gastrointestinal exposures are limited and variable.


Subject(s)
Diabetes Mellitus, Type 1 , Probiotics , Adult , Autoimmunity , Bacteria , Candida , Child , Child, Preschool , Fungi , Gastrointestinal Tract/microbiology , Humans
20.
Sci Rep ; 12(1): 4516, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296692

ABSTRACT

The Environmental Determinants of Diabetes in the Young (TEDDY) study enrolled 8676 children, 3-4 months of age, born with HLA-susceptibility genotypes for islet autoimmunity (IA) and type 1 diabetes (T1D). Whole-genome sequencing (WGS) was performed in 1119 children in a nested case-control study design. Telomere length was estimated from WGS data using five tools: Computel, Telseq, Telomerecat, qMotif and Motif_counter. The estimated median telomere length was 5.10 kb (IQR 4.52-5.68 kb) using Computel. The age when the blood sample was drawn had a significant negative correlation with telomere length (P = 0.003). European children, particularly those from Finland (P = 0.041) and from Sweden (P = 0.001), had shorter telomeres than children from the U.S.A. Paternal age (P = 0.019) was positively associated with telomere length. First-degree relative status, presence of gestational diabetes in the mother, and maternal age did not have a significant impact on estimated telomere length. HLA-DR4/4 or HLA-DR4/X children had significantly longer telomeres compared to children with HLA-DR3/3 or HLA-DR3/9 haplogenotypes (P = 0.008). Estimated telomere length was not significantly different with respect to any IA (P = 0.377), IAA-first (P = 0.248), GADA-first (P = 0.248) or T1D (P = 0.861). These results suggest that telomere length has no major impact on the risk for IA, the first step to develop T1D. Nevertheless, telomere length was shorter in the T1D high prevalence populations, Finland and Sweden.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Autoantibodies , Autoimmunity/genetics , Case-Control Studies , Child , Female , Genetic Predisposition to Disease , Genotype , Humans , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...