Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Process Impacts ; 23(1): 28-47, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33404564

ABSTRACT

The most massive waste stream generated by conventional and unconventional hydrocarbon exploration is the produced water (PW). The costs and environmental issues associated with the management and disposal of PW, which contains high concentrations of inorganic and organic pollutants, is one of the most challenging problems faced by the oil and gas industry. Many of the current strategies for the reuse and recycling of PW are inefficient because of varying water demand and the spatial and temporal variations in the chemical composition of PW. The chemical composition of PW is controlled by a multitude of factors and can vary significantly over time. This study aims to understand different parameters and processes that control the quality of PW generated from hydrocarbon-bearing formations by analyzing relationships between their major ion concentrations, O, H, and Sr isotopic composition. We selected PW data sets from three conventional (Trenton, Edwards, and Wilcox Formations) and four unconventional (Lance, Marcellus, Bakken, and Mesaverde Formations) oil and gas formations with varying lithology and depositional environment. Using comparative geochemical data analysis, we determined that the geochemical signature of PW is controlled by a complex interplay of several factors, including the original source of water (connate marine vs. non-marine), migration of the basinal fluids, the nature and degree of water-mineral-hydrocarbon interactions, water recharge, processes such as evaporation and ultrafiltration, and production techniques (conventional vs. unconventional). The development of efficient PW recycle and reuse strategies requires a holistic understanding of the geological and hydrological history of each formation to account for the temporal and spatial heterogeneities.


Subject(s)
Oil and Gas Fields , Water Pollutants, Chemical , Hydrocarbons , Minerals , Wastewater , Water Pollutants, Chemical/analysis
2.
Environ Sci Process Impacts ; 21(2): 291-307, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30688342

ABSTRACT

Evidence for microbes has been detected in extreme subsurface environments as deep as 2.5 km with temperatures as high as 90 °C, demonstrating that microbes can adapt and survive extreme environmental conditions. Deep subsurface shales are increasingly exploited for their energy applications, thus characterizing the prevalence and role of microbes in these ecosystems essential for understanding biogeochemical cycles and maximizing production from hydrocarbon-bearing formations. Here, we describe the distribution of bacterial ester-linked phospholipid fatty acids (PLFA) and diglyceride fatty acids (DGFA) in sidewall cores retrieved from three distinct geologic horizons collected to 2275 m below ground surface in a Marcellus Shale well, West Virginia, USA. We examined the abundance and variety of PLFA and DGFA prior to energy development within and above the Marcellus Shale Formation into the overlying Mahantango Formation of the Appalachian Basin. Lipid biomarkers in the cores suggest the presence of microbial communities comprising Gram (+), Gram (-) as well as stress indicative biomarkers. Microbial PLFA and DGFA degradation in the subsurface can be influenced by stressful environmental conditions associated with the subsurface. The PLFA concentration and variety were higher in the transition zone between the extremely low permeability Marcellus Shale Formation and the more permeable Mahantango Formation. In contrast to this distribution, more abundant and diverse DGFA membrane profiles were associated with the Mahantango Formation. The stress indicative biomarkers like the trans-membrane fatty acids, oxiranes, keto-, and dimethyl lipid fatty acids were present in all cores, potentially indicating that the bacterial communities had experienced physiological stress or nutrient deprivation during or after deposition. The DGFA profiles expressed more stress indicative biomarkers as opposed to the PLFA membrane profiles. These findings suggest the probable presence of indigenous microbial communities in the deep subsurface shale and also improves our understanding of microbial survival mechanisms in ancient deep subsurface environments.


Subject(s)
Bacteria/metabolism , Biomarkers/metabolism , Fatty Acids/metabolism , Minerals/metabolism , Phospholipids/metabolism , Microbiota , West Virginia
3.
Front Microbiol ; 8: 2141, 2017.
Article in English | MEDLINE | ID: mdl-29085355

ABSTRACT

[This corrects the article on p. 1408 in vol. 8, PMID: 28790998.].

4.
Front Microbiol ; 8: 1408, 2017.
Article in English | MEDLINE | ID: mdl-28790998

ABSTRACT

Growing interest in the utilization of black shales for hydrocarbon development and environmental applications has spurred investigations of microbial functional diversity in the deep subsurface shale ecosystem. Lipid biomarker analyses including phospholipid fatty acids (PLFAs) and diglyceride fatty acids (DGFAs) represent sensitive tools for estimating biomass and characterizing the diversity of microbial communities. However, complex shale matrix properties create immense challenges for microbial lipid extraction procedures. Here, we test three different lipid extraction methods: modified Bligh and Dyer (mBD), Folch (FOL), and microwave assisted extraction (MAE), to examine their ability in the recovery and reproducibility of lipid biomarkers in deeply buried shales. The lipid biomarkers were analyzed as fatty acid methyl esters (FAMEs) with the GC-MS, and the average PL-FAME yield ranged from 67 to 400 pmol/g, while the average DG-FAME yield ranged from 600 to 3,000 pmol/g. The biomarker yields in the intact phospholipid Bligh and Dyer treatment (mBD + Phos + POPC), the Folch, the Bligh and Dyer citrate buffer (mBD-Cit), and the MAE treatments were all relatively higher and statistically similar compared to the other extraction treatments for both PLFAs and DGFAs. The biomarker yields were however highly variable within replicates for most extraction treatments, although the mBD + Phos + POPC treatment had relatively better reproducibility in the consistent fatty acid profiles. This variability across treatments which is associated with the highly complex nature of deeply buried shale matrix, further necessitates customized methodological developments for the improvement of lipid biomarker recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...