Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(18): 5656-5661, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657275

ABSTRACT

A physical platform for nodes of the envisioned quantum Internet is long-sought. Here we propose such a platform, along with a conceptually simple and experimentally uncomplicated quantum information processing scheme, realized in a system of multiple crystal-phase quantum dots. We introduce novel location qubits, describe a method to construct a universal set of all-optical quantum gates, and simulate their performance in realistic structures, including decoherence sources. Our results show that location qubits are robust against the main decoherence mechanisms, and realistic single-qubit gate fidelities exceed 99.9%. Our scheme paves a clear way toward constructing multiqubit solid-state quantum registers with a built-in photonic interface─a key building block of the forthcoming quantum Internet.

2.
Nano Lett ; 23(3): 895-901, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36649590

ABSTRACT

Wurtzite AlGaAs is a technologically promising yet unexplored material. Here we study it both experimentally and numerically. We develop a complete numerical model based on an 8-band k→·p→ method, including electromechanical fields, and calculate the optoelectronic properties of wurtzite AlGaAs nanowires with different Al content. We then compare them with our experimental data. Our results strongly suggest that wurtzite AlGaAs is a direct band gap material. Moreover, we have also numerically obtained the band gap of wurtzite AlAs and the valence band offset between AlAs and GaAs in the wurtzite symmetry.

3.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34835659

ABSTRACT

Control of directionality of emissions is an important task for the realization of novel nanophotonic devices based on nanowires. Most of the existing approaches providing high directionality of the light emitted from nanowires are based on the utilization of the tapered shape of nanowires, serving as nanoantenna coupling with the light waveguided in nanowire and the directional output beam. Here we report the beaming of the emitted light with wavelength near 800 nm by naturally formed core-shell AlGaAs NW with multiply GaAs quantum dots (QDs) diameter 30 nm and height 10 nm, while the diameter of NW 130 nm, what does not support efficient emission into waveguided modes, including the mode HE11. Experimental measurements show that intensity of emission for directions in the vicinity of the axis of NW is about two orders of magnitude higher than for perpendicular directions. The developed theoretical approach allowed us to calculate the probability of spontaneous emission for various directions and into waveguided modes and showed that highly directional radiation can be provided by the intrinsic emission properties of cylindrical NW. Our results suggest that for the small diameter of NW, directional emissions are associated with an TM0 leaky mode (when electric field oriented in axial direction) and therefore manifests in an existence of axial electric dipole transitions in quantum dots.

4.
Sci Rep ; 10(1): 14911, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32913255

ABSTRACT

Optically active quantum dots are one of the promising candidates for fundamental building blocks in quantum technology. Many practical applications would comprise of multiple coupled quantum dots, each of which must be individually chargeable. However, the most advanced demonstrations are limited to devices with only a single dot, and individual charging has neither been demonstrated nor proposed for an array of optically active quantum dots. Here we propose and numerically demonstrate a method for controlled charging of multiple quantum dots and charge transport between the dots. We show that our method can be implemented in realistic structures with fidelities greater than 99.9%. The scheme is based on all-optical resonant manipulation of charges in an array of quantum dots formed by a type-II band alignment, such as crystal-phase quantum dots in nanowires. Our work opens new practical avenues for realizations of advanced quantum photonic devices, for instance, solid-state quantum registers with a photonic interface.

5.
Sci Rep ; 9(1): 6053, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30988356

ABSTRACT

Realization of an on-chip quantum network is a major goal in the field of integrated quantum photonics. A typical network scalable on-chip demands optical integration of single photon sources, optical circuitry and detectors for routing and processing of quantum information. Current solutions either notoriously experience considerable decoherence or suffer from extended footprint dimensions limiting their on-chip scaling. Here we propose and numerically demonstrate a robust on-chip network based on an epsilon-near-zero (ENZ) material, whose dielectric function has the real part close to zero. We show that ENZ materials strongly protect quantum information against decoherence and losses during its propagation in the dense network. As an example, we model a feasible implementation of an ENZ network and demonstrate that information can be reliably sent across a titanium nitride grid with a coherence length of 434 nm, operating at room temperature, which is more than 40 times larger than state-of-the-art plasmonic analogs. Our results facilitate practical realization of large multi-node quantum photonic networks and circuits on-a-chip.

6.
Nano Lett ; 18(11): 7217-7221, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30336054

ABSTRACT

Quantum dots tuned to atomic resonances represent an emerging field of hybrid quantum systems where the advantages of quantum dots and natural atoms can be combined. Embedding quantum dots in nanowires boosts these systems with a set of powerful possibilities, such as precise positioning of the emitters, excellent photon extraction efficiency and direct electrical contacting of quantum dots. Notably, nanowire structures can be grown on silicon substrates, allowing for a straightforward integration with silicon-based photonic devices. In this work we show controlled growth of nanowire-quantum-dot structures on silicon, frequency tuned to atomic transitions. We grow GaAs quantum dots in AlGaAs nanowires with a nearly pure crystal structure and excellent optical properties. We precisely control the dimensions of quantum dots and their position inside nanowires and demonstrate that the emission wavelength can be engineered over the range of at least 30 nm around 765 nm. By applying an external magnetic field, we are able to fine-tune the emission frequency of our nanowire quantum dots to the D2 transition of 87Rb. We use the Rb transitions to precisely measure the actual spectral line width of the photons emitted from a nanowire quantum dot to be 9.4 ± 0.7 µeV, under nonresonant excitation. Our work brings highly desirable functionalities to quantum technologies, enabling, for instance, a realization of a quantum network, based on an arbitrary number of nanowire single-photon sources, all operating at the same frequency of an atomic transition.

7.
Nano Lett ; 16(2): 1081-5, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26806321

ABSTRACT

We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width. We notice that the emission spectra consist often of two peaks close in energy, which we explain with a comprehensive theory showing that the symmetry of the system plays a crucial role for the hole levels forming hybridized orbitals. Our results state that crystal phase quantum dots have promising quantum optical properties for single photon application and quantum optics.

8.
Nat Commun ; 3: 1266, 2012.
Article in English | MEDLINE | ID: mdl-23232396

ABSTRACT

Hybrid silicon nanowires with an integrated light-emitting segment can significantly advance nanoelectronics and nanophotonics. They would combine transport and optical characteristics in a nanoscale device, which can operate in the fundamental single-electron and single-photon regime. III-V materials, such as direct bandgap gallium arsenide, are excellent candidates for such optical segments. However, interfacing them with silicon during crystal growth is a major challenge, because of the lattice mismatch, different expansion coefficients and the formation of antiphase boundaries. Here we demonstrate a silicon nanowire with an integrated gallium-arsenide segment. We precisely control the catalyst composition and surface chemistry to obtain dislocation-free interfaces. The integration of gallium arsenide of high optical quality with silicon is enabled by short gallium phosphide buffers. We anticipate that such hybrid silicon/III-V nanowires open practical routes for quantum information devices, where for instance electronic and photonic quantum bits are manipulated in a III-V segment and stored in a silicon section.

9.
Nat Commun ; 3: 737, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22415828

ABSTRACT

The ability to achieve near-unity light-extraction efficiency is necessary for a truly deterministic single-photon source. The most promising method to reach such high efficiencies is based on embedding single-photon emitters in tapered photonic waveguides defined by top-down etching techniques. However, light-extraction efficiencies in current top-down approaches are limited by fabrication imperfections and etching-induced defects. The efficiency is further tempered by randomly positioned off-axis quantum emitters. Here we present perfectly positioned single quantum dots on the axis of a tailored nanowire waveguide using bottom-up growth. In comparison to quantum dots in nanowires without waveguides, we demonstrate a 24-fold enhancement in the single-photon flux, corresponding to a light-extraction efficiency of 42%. Such high efficiencies in one-dimensional nanowires are promising to transfer quantum information over large distances between remote stationary qubits using flying qubits within the same nanowire p-n junction.

10.
Nano Lett ; 10(10): 4055-60, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20809611

ABSTRACT

Nanowire-superlattices with different structural phases along the nanowire direction, such as wurtzite (WZ) and zincblende (ZB) forms of the same compound, often exhibit a "type II" band-alignment with electrons on ZB and holes on WZ. This is a material property of most of III-V semiconductors. We show via InP nanowires that as the nanowire diameter decreases, quantum-confinement alters this basic material property, placing both electrons and holes on the same (ZB) phase. This structural design causes a dramatic increase in absorption strength and reduced radiative lifetime.

12.
Nano Lett ; 9(5): 1989-93, 2009 May.
Article in English | MEDLINE | ID: mdl-19341258

ABSTRACT

We report exciton spin memory in a single InAs(0.25)P(0.75) quantum dot embedded in an InP nanowire. By synthesizing clean quantum dots with linewidths as narrow as about 30 microeV, we are able to resolve individual spin states at magnetic fields on the order of 1 T. We can prepare a given spin state by tuning excitation polarization or excitation energy. These experiments demonstrate the potential of this system to form a quantum interface between photons and electrons.

SELECTION OF CITATIONS
SEARCH DETAIL
...