Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Wound Care ; 30(Sup9a): IVi-IVx, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34597167

ABSTRACT

AIM: Self-healing, swellable and biodegradable polymers are vital materials that may facilitate the different stages of wound healing. The aim of this research was to prepare wound healing films using self-healing polyvinyl alcohol (PVA), swellable hydroxypropyl methylcellulose (HPMC), biodegradable polyglycolic acid (PGA) sutures and ciprofloxacin antibiotic for improved treatment outcome. METHODS: Films were formulated through aqueous-based mixing of varying amounts of polyvinyl alcohol (10-20% weight/weight (w/w)) and hydroxypropyl methylcellulose (0.5, 1% w/w) with fixed quantities of ciprofloxacin. PGA sutures were placed as grids within the wet mixtures of the polymers and ciprofloxacin, and thereafter products were air dried. The formulated films were evaluated for swelling ratio, breaking elongation, folding endurance, moisture uptake and loss, compatibility and in vitro antibiotic release. Furthermore, in vivo wound healing was studied using excision model and histopathological examinations. RESULTS: Swelling ratios were above 1.0 and the films were minimally stretchable, with folding endurance greater than 500. Films were stable while moisture uptake and loss were observed to be less than 30%. Among the optimised hydrogel batches, those containing 10% w/w PVA and 1% w/w HPMC with no PGA showed the highest drug release of 73%, whereas the batches with higher PGA content showed higher percentage wound size reduction with minimal scar. The completeness of wound healing with batches containing PVA, HPMC, ciprofloxacin and PGA, along with the standard, is evident considering the massive cornification, regeneration of the epithelial front and stratum spinosum. CONCLUSION: The findings show that polymer-based multifunctional composite films are suitable for use as dressings for improved wound healing.


Subject(s)
Ciprofloxacin , Polymers , Bandages , Hydrogels , Wound Healing
2.
Sci Transl Med ; 12(554)2020 07 29.
Article in English | MEDLINE | ID: mdl-32727913

ABSTRACT

Requiring regional or in-country confirmatory clinical trials before approval of drugs already approved elsewhere delays access to medicines in low- and middle-income countries and raises drug costs. Here, we discuss the scientific and technological advances that may reduce the need for in-country or in-region clinical trials for drugs approved in other countries and limitations of these advances that could necessitate in-region clinical studies.


Subject(s)
Developing Countries , Drug Costs , Drug Approval , Drug Development
3.
Article in English | MEDLINE | ID: mdl-31912772

ABSTRACT

BACKGROUND: Aspirin is a nonsteroidal anti-inflammatory drug that is very effective in the treatment of inflammation and other health conditions, however, it causes gastric irritation. Recently, researchers have developed patents (US9757529, 2019) of inhalable aspirin for rapid absorption and circumvention of gastric irritation. OBJECTIVE: The aim of this work was to formulate aspirin-loaded lipid based formulation in order to enhance oral bioavailability and inhibit gastric irritation. METHODS: This solid lipid microparticles loaded with aspirin (SLM) was formulated by a modified cold homogenization-solvent evaporation method. In vitro studies such as in vitro drug release, particle size, Encapsulation Efficiency (EE), micromeritic properties and loading capacity were carried out. Pharmacodynamics studies such as anti-inflammatory and ulcerative properties of the SLM were also carried out in Wistar rats. RESULTS: The results showed that aspirin entrapped SLM exhibited the highest EE of 72% and particle size range of 7.60 + 0.141µm to 20.25 + 0.070µm. Formulations had about 55% drug release at 6h in simulated intestinal fluid pH 6.8. The formulations had good flowability that could facilitate filling into hard gelatin capsule shells. The SLM exhibited 100% gastroprotection against aspirin-induced ulcers (p < 0.05). The percentage of anti-inflammatory activities also showed that aspirin-entrapped SLM had 78% oedema inhibition at 7h, while the reference had 68% inhibition at 7h. CONCLUSION: Aspirin-entrapped SLM showed good sustained-release properties, enhanced antiinflammatory properties and total gastric protection from aspirin-induced ulcers and could be used as once-daily oral aspirin.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Aspirin/administration & dosage , Drug Carriers/chemistry , Lipids/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacokinetics , Aspirin/pharmacology , Biological Availability , Chemistry, Pharmaceutical , Drug Liberation , Female , Male , Microspheres , Particle Size , Patents as Topic , Rats , Rats, Wistar , Stomach Ulcer/prevention & control
4.
Eur J Pharm Sci ; 111: 358-375, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28986195

ABSTRACT

The use of conventional vaginal formulations of miconazole nitrate (MN) in the treatment of deep-seated VVC (vulvovaginal candidiasis) is limited by poor penetration capacity and low solubility of MN, short residence time and irritation at the application site. Surface-modified mucoadhesive microgels were developed to minimize local irritation, enhance penetration capacity and solubility and prolong localized vaginal delivery of MN for effective treatment of deep-seated VVC. Solid lipid microparticles (SLMs) were prepared from matrices consisting of hydrogenated palm oil (Softisan® 154, SF) and super-refined sunseed oil (SO) with or without polyethylene glycol (PEG)-4000, characterized for physicochemical performance and used to prepare mucoadhesive microgels (MMs) encapsulating MN, employing Polycarbophil as bioadhesive polymer. The MMs were evaluated for physicochemical performance and in vitro drug release in simulated vaginal fluid (pH=4.2), whereas mucoadhesive, rheological and stability tests, anticandidal efficacy in immunosuppressed estrogen-dependent female rats and vaginal tolerance test in rabbits were performed with optimized formulation. The amorphicity of 1:9 phytolipid blend (SO:SF) was increased in the presence of PEG-4000. The physicochemical properties of the SLMs and MMs indicated their suitability for vaginal drug delivery. Overall, MN-loaded PEGylated MMs exhibited significantly (p<0.05) more prolonged drug release than non-PEGylated MMs. Additionally, optimized PEGylated MMs was stable at 40±2°C over a period of 6months, viscoelastic, mucoadhesive, non-sensitizing, histopathologically safe and gave remarkably (p<0.05) higher reduction in Candida albicans load (86.06%) than Daktarin® (75.0%) and MN-loaded polymeric-hydrogel (47.74%) in treated rats in 12days. Thus, PEGylated MMs is promising for effective and convenient treatment of VVC.


Subject(s)
Candidiasis, Vulvovaginal/drug therapy , Drug Delivery Systems , Miconazole/therapeutic use , Adhesiveness , Administration, Intravaginal , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/therapeutic use , Candida albicans/drug effects , Delayed-Action Preparations/therapeutic use , Drug-Related Side Effects and Adverse Reactions , Female , Hydrogen-Ion Concentration , Lipids , Miconazole/administration & dosage , Random Allocation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...