Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 34(8): 41, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37530973

ABSTRACT

The paper presents the results of the experimental and analytical study of targeted drug-loaded polymer-based microspheres made from blend polymer of polylactic-co-glycolic acid and polycaprolactone (PLGA-PCL) for targeted and localized cancer drug delivery. In vitro sustained release with detailed thermodynamically driven drug release kinetics, over a period of three months using encapsulated targeted drugs (prodigiosin-EphA2 or paclitaxel-EphA2) and control drugs [Prodigiosin (PGS), and paclitaxel (PTX)] were studied. Results from in vitro study showed a sustained and localized drug release that is well-characterized by non-Fickian Korsmeyer-Peppas kinetics model over the range of temperatures of 37 °C (body temperature), 41 °C, and 44 °C (hyperthermic temperatures). The in vitro alamar blue, and flow cytometry assays in the presence of the different drug-loaded polymer formulations resulted to cell death and cytotoxicity that was evidence through cell inhibition and late apoptosis on triple negative breast cancer (TNBC) cells (MDA-MB 231). In vivo studies carried out on groups of 4-week-old athymic nude mice that were induced with subcutaneous TNBC, showed that the localized release of the EphA2-conjugated drugs was effective in complete elimination of residual tumor after local surgical resection. Finally, ex vivo histopathological analysis carried out on the euthanized mice revealed no cytotoxicity and absence of breast cancer metastases in the liver, kidney, and lungs 12 weeks after treatment. The implications of the results are then discussed for the development of encapsulated EphA2-conjugated drugs formulation in the specific targeting, localized, and sustain drug release for the elimination of local recurred TNBC tumors after surgical resection.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer , Prodigiosin , Microspheres , Mice, Nude , Cell Line, Tumor , Paclitaxel/pharmacology , Polymers
2.
J Biomed Mater Res B Appl Biomater ; 109(12): 2041-2056, 2021 12.
Article in English | MEDLINE | ID: mdl-33960623

ABSTRACT

This paper presents in vitro studies of the sustained release of Annona muricata leaf extracts (AME) from hybrid electrospun fibers for breast cancer treatment. Electrospun hybrid scaffolds were fabricated from crude AME extracts, poly(lactic-co-glycolic acid)/gelatin (PLGA/Ge) and pluronic F127. The physicochemical properties of the AME extract and scaffolds were studied. The antiproliferative effects of the scaffolds were also assessed on breast cancer (MCF-7 and MDA-MB-231) and non-tumorigenic breast (MCF10A) cell lines. Scanning electron microscope micrographs revealed a random network of micro- and submicron fibers. In vitro drug release profiles, governed by quasi-Fickian diffusion at pH 7.4 and non-Fickian super case II at pH 6.7, showed initial burst AME release from the PLGA/Ge-AME and PLGA/Ge-F127/AME fibers at pH 7.4, and burst release from PLGA/Ge-F127/AME (not observed from PLGA/Ge-AME) at pH 6.7. Then, a slower, sustained release of the remaining AME from the fibers, attributed to the onset of degradation of the PLGA/Ge backbone, was observed for the next 72 hr. The cumulative release of AME was 89.33 ± 0.73% (PLGA/Ge-AME) and 51.17 ± 7.96% (PLGA/Ge-F127/AME) at pH 7.4, and 9.27 ± 2.3% and 73.5 ± 4.5%, respectively, at pH 6.7. Pluronic F127 addition increased the drug loading capacity and prolonged the sustained AME release from the fibers. The released AME significantly inhibited the in vitro growth of the breast cancer cells more than the non-tumorigenic cells, due to the induction of apoptosis, providing evidence for using pluronic F127-containing electrospun fibers for sustained and localized AME delivery to breast cancer cells.


Subject(s)
Annona , Breast Neoplasms , Breast Neoplasms/drug therapy , Drug Liberation , Female , Humans , Poloxamer/chemistry , Poloxamer/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...