Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Cell Biol ; 101(1): 87-100, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36469862

ABSTRACT

Myocardial fibrosis is a common pathological companion of various cardiovascular diseases. To date, the role of enhancer of zeste homolog 2 (EZH2) in cancer has been well demonstrated including in renal carcinoma and its inhibitors have entered the stage of phase I/II clinical trials. However, the precise mechanism of EZH2 in cardiac diseases is largely unclear. In the current study, we first found that EZH2 expression was increased in Ang-II-treated cardiac fibroblasts (CFs) and mouse heart homogenates following isoproterenol (ISO) administration for 21 days, respectively. Ang-II induces CFs activation and increased collagen-I, collagen-III, α-SMA, EZH2, and trimethylates lysine 27 on histone 3 (H3K27me3) expressions can be reversed by EZH2 inhibitor (GSK126) and EZH2 siRNA. The ISO-induced cardiac hypertrophy, and fibrosis in vivo which were also related to the upregulation of EZH2 and its downstream target, H3K27me3, could be recovered by GSK126. Furthermore, the upregulation of EZH2 induces the decrease of paired box 6 (PAX6) and C-X-C motif ligand 10 (CXCL10) "which" were also reversed by GSK126 treatment. In summary, the present evidence strongly suggests that GSK126 could be a therapeutic intervention, blunting the development and progression of myocardial fibrosis in an EZH2-PAX6-CXCL10-dependent manner.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Animals , Mice , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Fibrosis , Histones/metabolism , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...