Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Epilepsia ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794998

ABSTRACT

OBJECTIVE: Focal cooling is emerging as a relevant therapy for drug-resistant epilepsy (DRE). However, we lack data on its effectiveness in controlling seizures that originate in deep-seated areas like the hippocampus. We present a thermoelectric solution for focal brain cooling that specifically targets these brain structures. METHODS: A prototype implantable device was developed, including temperature sensors and a cannula for penicillin injection to create an epileptogenic zone (EZ) near the cooling tip in a non-human primate model of epilepsy. The mesial temporal lobe was targeted with repeated penicillin injections into the hippocampus. Signals were recorded from an sEEG (Stereoelectroencephalography) lead placed 2 mm from the EZ. Once the number of seizures had stabilized, focal cooling was applied, and temperature and electroclinical events were monitored using a customized detection algorithm. Tests were performed on two Macaca fascicularis monkeys at three temperatures. RESULTS: Hippocampal seizures were observed 40-120 min post-injection, their duration and frequency stabilized at around 120 min. Compared to the control condition, a reduction in the number of hippocampal seizures was observed with cooling to 21°C (Control: 4.34 seizures, SD 1.704 per 20 min vs Cooling to 21°C: 1.38 seizures, SD 1.004 per 20 min). The effect was more pronounced with cooling to 17°C, resulting in an almost 80% reduction in seizure frequency. Seizure duration and number of interictal discharges were unchanged following focal cooling. After several months of repeated penicillin injections, hippocampal sclerosis was observed, similar to that recorded in humans. In addition, seizures were identified by detecting temperature variations of 0.3°C in the EZ correlated with the start of the seizures. SIGNIFICANCE: In epilepsy therapy, the ultimate aim is total seizure control with minimal side effects. Focal cooling of the EZ could offer an alternative to surgery and to existing neuromodulation devices.

3.
Nature ; 618(7963): 126-133, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225984

ABSTRACT

A spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis1,2. Here, we restored this communication with a digital bridge between the brain and spinal cord that enabled an individual with chronic tetraplegia to stand and walk naturally in community settings. This brain-spine interface (BSI) consists of fully implanted recording and stimulation systems that establish a direct link between cortical signals3 and the analogue modulation of epidural electrical stimulation targeting the spinal cord regions involved in the production of walking4-6. A highly reliable BSI is calibrated within a few minutes. This reliability has remained stable over one year, including during independent use at home. The participant reports that the BSI enables natural control over the movements of his legs to stand, walk, climb stairs and even traverse complex terrains. Moreover, neurorehabilitation supported by the BSI improved neurological recovery. The participant regained the ability to walk with crutches overground even when the BSI was switched off. This digital bridge establishes a framework to restore natural control of movement after paralysis.


Subject(s)
Brain-Computer Interfaces , Brain , Electric Stimulation Therapy , Neurological Rehabilitation , Spinal Cord Injuries , Spinal Cord , Walking , Humans , Brain/physiology , Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods , Quadriplegia/etiology , Quadriplegia/rehabilitation , Quadriplegia/therapy , Reproducibility of Results , Spinal Cord/physiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/therapy , Walking/physiology , Leg/physiology , Neurological Rehabilitation/instrumentation , Neurological Rehabilitation/methods , Male
4.
Front Hum Neurosci ; 17: 1111645, 2023.
Article in English | MEDLINE | ID: mdl-37007675

ABSTRACT

Introduction: In brain-computer interfaces (BCI) research, recording data is time-consuming and expensive, which limits access to big datasets. This may influence the BCI system performance as machine learning methods depend strongly on the training dataset size. Important questions arise: taking into account neuronal signal characteristics (e.g., non-stationarity), can we achieve higher decoding performance with more data to train decoders? What is the perspective for further improvement with time in the case of long-term BCI studies? In this study, we investigated the impact of long-term recordings on motor imagery decoding from two main perspectives: model requirements regarding dataset size and potential for patient adaptation. Methods: We evaluated the multilinear model and two deep learning (DL) models on a long-term BCI & Tetraplegia (ClinicalTrials.gov identifier: NCT02550522) clinical trial dataset containing 43 sessions of ECoG recordings performed with a tetraplegic patient. In the experiment, a participant executed 3D virtual hand translation using motor imagery patterns. We designed multiple computational experiments in which training datasets were increased or translated to investigate the relationship between models' performance and different factors influencing recordings. Results: Our results showed that DL decoders showed similar requirements regarding the dataset size compared to the multilinear model while demonstrating higher decoding performance. Moreover, high decoding performance was obtained with relatively small datasets recorded later in the experiment, suggesting motor imagery patterns improvement and patient adaptation during the long-term experiment. Finally, we proposed UMAP embeddings and local intrinsic dimensionality as a way to visualize the data and potentially evaluate data quality. Discussion: DL-based decoding is a prospective approach in BCI which may be efficiently applied with real-life dataset size. Patient-decoder co-adaptation is an important factor to consider in long-term clinical BCI.

5.
Front Hum Neurosci ; 17: 1075666, 2023.
Article in English | MEDLINE | ID: mdl-36950147

ABSTRACT

Introduction: Motor Brain-Computer Interfaces (BCIs) create new communication pathways between the brain and external effectors for patients with severe motor impairments. Control of complex effectors such as robotic arms or exoskeletons is generally based on the real-time decoding of high-resolution neural signals. However, high-dimensional and noisy brain signals pose challenges, such as limitations in the generalization ability of the decoding model and increased computational demands. Methods: The use of sparse decoders may offer a way to address these challenges. A sparsity-promoting penalization is a common approach to obtaining a sparse solution. BCI features are naturally structured and grouped according to spatial (electrodes), frequency, and temporal dimensions. Applying group-wise sparsity, where the coefficients of a group are set to zero simultaneously, has the potential to decrease computational time and memory usage, as well as simplify data transfer. Additionally, online closed-loop decoder adaptation (CLDA) is known to be an efficient procedure for BCI decoder training, taking into account neuronal feedback. In this study, we propose a new algorithm for online closed-loop training of group-wise sparse multilinear decoders using L p -Penalized Recursive Exponentially Weighted N-way Partial Least Square (PREW-NPLS). Three types of sparsity-promoting penalization were explored using L p with p = 0., 0.5, and 1. Results: The algorithms were tested offline in a pseudo-online manner for features grouped by spatial dimension. A comparison study was conducted using an epidural ECoG dataset recorded from a tetraplegic individual during long-term BCI experiments for controlling a virtual avatar (left/right-hand 3D translation). Novel algorithms showed comparable or better decoding performance than conventional REW-NPLS, which was achieved with sparse models. The proposed algorithms are compatible with real-time CLDA. Discussion: The proposed algorithm demonstrated good performance while drastically reducing the computational load and the memory consumption. However, the current study is limited to offline computation on data recorded with a single patient, with penalization restricted to the spatial domain only.

6.
Sci Rep ; 12(1): 21316, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494390

ABSTRACT

Brain-computer interfaces (BCIs) translate brain signals into commands to external effectors, and mainly target severely disabled users. The usability of BCIs may be improved by reducing their major constraints, such as the necessity for special training sessions to initially calibrate and later keep up to date the neural signal decoders. In this study, we show that it is possible to train and update BCI decoders during free use of motor BCIs. In addition to the neural signal decoder controlling effectors (control decoder), one more classifier is proposed to detect neural correlates of BCI motor task performances (MTP). MTP decoders reveal whether the actions performed by BCI effectors matched the user's intentions. The combined outputs of MTP and control decoders allow forming training datasets to update the control decoder online and in real time during free use of BCIs. The usability of the proposed auto-adaptive BCI (aaBCI) is demonstrated for two principle BCIs paradigms: with discrete outputs (4 classes BCI, virtual 4-limb exoskeleton), and with continuous outputs (cursor 2D control). The proof of concept was performed in an online simulation study using an ECoG dataset collected from a tetraplegic during a BCI clinical trial. The control decoder reached a multiclass area under the ROC curve of 0.7404 using aaBCI, compared to a chance level of 0.5173 and to 0.8187 for supervised training for the multiclass BCI, and a cosine similarity of 0.1211 using aaBCI, compared to a chance level of 0.0036 and to 0.2002 for supervised training for the continuous BCI.


Subject(s)
Brain-Computer Interfaces , Task Performance and Analysis , Electrocorticography , Brain , Computer Simulation , Electroencephalography
7.
J Neural Eng ; 19(2)2022 03 30.
Article in English | MEDLINE | ID: mdl-35234665

ABSTRACT

Objective.The article aims at addressing 2 challenges to step motor brain-computer interface (BCI) out of laboratories: asynchronous control of complex bimanual effectors with large numbers of degrees of freedom, using chronic and safe recorders, and the decoding performance stability over time without frequent decoder recalibration.Approach.Closed-loop adaptive/incremental decoder training is one strategy to create a model stable over time. Adaptive decoders update their parameters with new incoming data, optimizing the model parameters in real time. It allows cross-session training with multiple recording conditions during closed loop BCI experiments. In the article, an adaptive tensor-based recursive exponentially weighted Markov-switching multi-linear model (REW-MSLM) decoder is proposed. REW-MSLM uses a mixture of expert (ME) architecture, mixing or switching independent decoders (experts) according to the probability estimated by a 'gating' model. A Hidden Markov model approach is employed as gating model to improve the decoding robustness and to provide strong idle state support. The ME architecture fits the multi-limb paradigm associating an expert to a particular limb or action.Main results.Asynchronous control of an exoskeleton by a tetraplegic patient using a chronically implanted epidural electrocorticography (EpiCoG) recorder is reported. The stable over a period of six months (without decoder recalibration) eight-dimensional alternative bimanual control of the exoskeleton and its virtual avatar is demonstrated.Significance.Based on the long-term (>36 months) chronic bilateral EpiCoG recordings in a tetraplegic (ClinicalTrials.gov, NCT02550522), we addressed the poorly explored field of asynchronous bimanual BCI. The new decoder was designed to meet to several challenges: the high-dimensional control of a complex effector in experiments closer to real-world behavior (point-to-point pursuit versus conventional center-out tasks), with the ability of the BCI system to act as a stand-alone device switching between idle and control states, and a stable performance over a long period of time without decoder recalibration.


Subject(s)
Brain-Computer Interfaces , Exoskeleton Device , Clinical Studies as Topic , Electrocorticography/methods , Epidural Space , Humans , Linear Models
8.
J Neural Eng ; 19(2)2022 03 31.
Article in English | MEDLINE | ID: mdl-35287119

ABSTRACT

Objective.Motor brain-computer interfaces (BCIs) are a promising technology that may enable motor-impaired people to interact with their environment. BCIs would potentially compensate for arm and hand function loss, which is the top priority for individuals with tetraplegia. Designing real-time and accurate BCI is crucial to make such devices useful, safe, and easy to use by patients in a real-life environment. Electrocorticography (ECoG)-based BCIs emerge as a good compromise between invasiveness of the recording device and good spatial and temporal resolution of the recorded signal. However, most ECoG signal decoders used to predict continuous hand movements are linear models. These models have a limited representational capacity and may fail to capture the relationship between ECoG signal features and continuous hand movements. Deep learning (DL) models, which are state-of-the-art in many problems, could be a solution to better capture this relationship.Approach.In this study, we tested several DL-based architectures to predict imagined 3D continuous hand translation using time-frequency features extracted from ECoG signals. The dataset used in the analysis is a part of a long-term clinical trial (ClinicalTrials.gov identifier: NCT02550522) and was acquired during a closed-loop experiment with a tetraplegic subject. The proposed architectures include multilayer perceptron, convolutional neural networks (CNNs), and long short-term memory networks (LSTM). The accuracy of the DL-based and multilinear models was compared offline using cosine similarity.Main results.Our results show that CNN-based architectures outperform the current state-of-the-art multilinear model. The best architecture exploited the spatial correlation between neighboring electrodes with CNN and benefited from the sequential character of the desired hand trajectory by using LSTMs. Overall, DL increased the average cosine similarity, compared to the multilinear model, by up to 60%, from 0.189 to 0.302 and from 0.157 to 0.249 for the left and right hand, respectively.Significance.This study shows that DL-based models could increase the accuracy of BCI systems in the case of 3D hand translation prediction in a tetraplegic subject.


Subject(s)
Brain-Computer Interfaces , Deep Learning , Electrocorticography/methods , Electroencephalography/methods , Hand , Humans
9.
Article in English | MEDLINE | ID: mdl-36908334

ABSTRACT

The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI. Some workshops provided detailed examinations of specific methods, hardware, or processes. Others focused on specific BCI applications or user groups. Several workshops continued consensus building efforts designed to create BCI standards and increase the ease of comparisons between studies and the potential for meta-analysis and large multi-site clinical trials. Ethical and translational considerations were both the primary topic for some workshops or an important secondary consideration for others. The range of BCI applications continues to expand, with more workshops focusing on approaches that can extend beyond the needs of those with physical impairments. This paper summarizes each workshop, provides background information and references for further study, presents an overview of the discussion topics, and describes the conclusion, challenges, or initiatives that resulted from the interactions and discussion at the workshop.

10.
J Neural Eng ; 18(5)2021 09 09.
Article in English | MEDLINE | ID: mdl-34425566

ABSTRACT

Objective.The evaluation of the long-term stability of ElectroCorticoGram (ECoG) signals is an important scientific question as new implantable recording devices can be used for medical purposes such as Brain-Computer Interface (BCI) or brain monitoring.Approach.The long-term clinical validation of wireless implantable multi-channel acquisition system for generic interface with neurons (WIMAGINE), a wireless 64-channel epidural ECoG recorder was investigated. The WIMAGINE device was implanted in two quadriplegic patients within the context of a BCI protocol. This study focused on the ECoG signal stability in two patients bilaterally implanted in June 2017 (P1) and in November 2019 (P2).Methods. The ECoG signal was recorded at rest prior to each BCI session resulting in a 32 month and in a 14 month follow-up for P1 and P2 respectively. State-of-the-art signal evaluation metrics such as root mean square (RMS), the band power (BP), the signal to noise ratio (SNR), the effective bandwidth (EBW) and the spectral edge frequency (SEF) were used to evaluate stability of signal over the implantation time course. The time-frequency maps obtained from task-related motor activations were also studied to investigate the long-term selectivity of the electrodes.Mainresults.Based on temporal linear regressions, we report a limited decrease of the signal average level (RMS), spectral distribution (BP) and SNR, and a remarkable steadiness of the EBW and SEF. Time-frequency maps obtained during motor imagery, showed a high level of discrimination 1 month after surgery and also after 2 years.Conclusions.The WIMAGINE epidural device showed high stability over time. The signal evaluation metrics of two quadriplegic patients during 32 months and 14 months respectively provide strong evidence that this wireless implant is well-suited for long-term ECoG recording.Significance.These findings are relevant for the future of implantable BCIs, and could benefit other patients with spinal cord injury, amyotrophic lateral sclerosis, neuromuscular diseases or drug-resistant epilepsy.


Subject(s)
Brain-Computer Interfaces , Brain , Electrocorticography , Electrodes, Implanted , Electroencephalography , Epidural Space , Humans , Wireless Technology
11.
Sensors (Basel) ; 20(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397472

ABSTRACT

Brain source imaging and time frequency mapping (TFM) are commonly used in magneto/electro encephalography (M/EEG) imaging. However, these methods suffer from important limitations. Source imaging is based on an ill-posed inverse problem leading to instability of source localization solutions, has a limited capacity to localize high frequency oscillations and loses its robustness for induced responses (ill-defined trigger). The drawback of TFM is that it involves independent analysis of signals from a number of frequency bands, and from co-localized sensors. In the present article, a regression-based multi-sensor space-time-frequency analysis (MSA) approach, which integrates co-localized sensors and/or multi-frequency information, is proposed. To estimate task-specific brain activations, MSA uses cross-validated, shifted, multiple Pearson correlation, calculated from the time-frequency transformed brain signal and the binary signal of stimuli. The results are projected from the sensor space onto the cortical surface. To assess MSA performance, the proposed method was compared to the weighted minimum norm estimate (wMNE) source imaging method, in terms of spatial selectivity and robustness against an ill-defined trigger. Magnetoencephalography (MEG) recordings were performed in fourteen subjects during two motor tasks: finger tapping and elbow flexion/extension. In particular, our results show that the MSA approach provides good localization performance when compared to wMNE and statistically significant improvement of robustness against ill-defined trigger.


Subject(s)
Brain Mapping , Magnetoencephalography , Motor Cortex , Electroencephalography , Humans , Spatio-Temporal Analysis
12.
Lancet Neurol ; 18(12): 1112-1122, 2019 12.
Article in English | MEDLINE | ID: mdl-31587955

ABSTRACT

BACKGROUND: Approximately 20% of traumatic cervical spinal cord injuries result in tetraplegia. Neuroprosthetics are being developed to manage this condition and thus improve the lives of patients. We aimed to test the feasibility of a semi-invasive technique that uses brain signals to drive an exoskeleton. METHODS: We recruited two participants at Clinatec research centre, associated with Grenoble University Hospital, Grenoble, France, into our ongoing clinical trial. Inclusion criteria were age 18-45 years, stability of neurological deficits, a need for additional mobility expressed by the patient, ambulatory or hospitalised monitoring, registration in the French social security system, and signed informed consent. The exclusion criteria were previous brain surgery, anticoagulant treatments, neuropsychological sequelae, depression, substance dependence or misuse, and contraindications to magnetoencephalography (MEG), EEG, or MRI. One participant was excluded because of a technical problem with the implants. The remaining participant was a 28-year-old man, who had tetraplegia following a C4-C5 spinal cord injury. Two bilateral wireless epidural recorders, each with 64 electrodes, were implanted over the upper limb sensorimotor areas of the brain. Epidural electrocorticographic (ECoG) signals were processed online by an adaptive decoding algorithm to send commands to effectors (virtual avatar or exoskeleton). Throughout the 24 months of the study, the patient did various mental tasks to progressively increase the number of degrees of freedom. FINDINGS: Between June 12, 2017, and July 21, 2019, the patient cortically controlled a programme that simulated walking and made bimanual, multi-joint, upper-limb movements with eight degrees of freedom during various reach-and-touch tasks and wrist rotations, using a virtual avatar at home (64·0% [SD 5·1] success) or an exoskeleton in the laboratory (70·9% [11·6] success). Compared with microelectrodes, epidural ECoG is semi-invasive and has similar efficiency. The decoding models were reusable for up to approximately 7 weeks without recalibration. INTERPRETATION: These results showed long-term (24-month) activation of a four-limb neuroprosthetic exoskeleton by a complete brain-machine interface system using continuous, online epidural ECoG to decode brain activity in a tetraplegic patient. Up to eight degrees of freedom could be simultaneously controlled using a unique model, which was reusable without recalibration for up to about 7 weeks. FUNDING: French Atomic Energy Commission, French Ministry of Health, Edmond J Safra Philanthropic Foundation, Fondation Motrice, Fondation Nanosciences, Institut Carnot, Fonds de Dotation Clinatec.


Subject(s)
Brain-Computer Interfaces , Exoskeleton Device , Implantable Neurostimulators , Proof of Concept Study , Quadriplegia/rehabilitation , Wireless Technology , Adult , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/injuries , Cervical Vertebrae/surgery , Epidural Space/diagnostic imaging , Epidural Space/surgery , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Quadriplegia/diagnostic imaging , Quadriplegia/surgery , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/surgery , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/surgery , Wireless Technology/instrumentation
13.
Front Neurosci ; 12: 540, 2018.
Article in English | MEDLINE | ID: mdl-30158847

ABSTRACT

Brain-Computer Interfaces (BCIs) are systems that establish a direct communication pathway between the users' brain activity and external effectors. They offer the potential to improve the quality of life of motor-impaired patients. Motor BCIs aim to permit severely motor-impaired users to regain limb mobility by controlling orthoses or prostheses. In particular, motor BCI systems benefit patients if the decoded actions reflect the users' intentions with an accuracy that enables them to efficiently interact with their environment. One of the main challenges of BCI systems is to adapt the BCI's signal translation blocks to the user to reach a high decoding accuracy. This paper will review the literature of data-driven and user-specific transducer design and identification approaches and it focuses on internally-paced motor BCIs. In particular, continuous kinematic biomimetic and mental-task decoders are reviewed. Furthermore, static and dynamic decoding approaches, linear and non-linear decoding, offline and real-time identification algorithms are considered. The current progress and challenges related to the design of clinical-compatible motor BCI transducers are additionally discussed.

14.
Neuromodulation ; 21(2): 149-159, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28685918

ABSTRACT

BACKGROUND: Brain Computer Interface (BCI) studies are performed in an increasing number of applications. Questions are raised about electrodes, data processing and effectors. Experiments are needed to solve these issues. OBJECTIVE: To develop a simple BCI set-up to easier studies for improving the mathematical tools to process the ECoG to control an effector. METHOD: We designed a simple BCI using transcranial electrodes (17 screws, three mechanically linked to create a common reference, 14 used as recording electrodes) to record Electro-Cortico-Graphic (ECoG) neuronal activities in rodents. The data processing is based on an online self-paced non-supervised (asynchronous) BCI paradigm. N-way partial least squares algorithm together with Continuous Wavelet Transformation of ECoG recordings detect signatures related to motor activities. Signature detection in freely moving rats may activate external effectors during a behavioral task, which involved pushing a lever to obtain a reward. RESULTS: After routine training, we showed that peak brain activity preceding a lever push (LP) to obtain food reward was located mostly in the cerebellar cortex with a higher correlation coefficient, suggesting a strong postural component and also in the occipital cerebral cortex. Analysis of brain activities provided a stable signature in the high gamma band (∼180Hz) occurring within 1500 msec before the lever push approximately around -400 msec to -500 msec. Detection of the signature from a single cerebellar cortical electrode triggers the effector with high efficiency (68% Offline and 30% Online) and rare false positives per minute in sessions about 30 minutes and up to one hour (∼2 online and offline). CONCLUSIONS: In summary, our results are original as compared to the rest of the literature, which involves rarely rodents, a simple BCI set-up has been developed in rats, the data show for the first time long-term, up to one year, unsupervised online control of an effector.


Subject(s)
Brain-Computer Interfaces , Brain/physiology , Evoked Potentials/physiology , Wakefulness/physiology , Algorithms , Animals , Brain Mapping , Electrodes, Implanted , Electroencephalography , Female , Longitudinal Studies , Online Systems , Physical Stimulation , Psychomotor Performance/physiology , Rats , Time Factors , User-Computer Interface
15.
Sci Rep ; 7(1): 16281, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176638

ABSTRACT

A tensor-input/tensor-output Recursive Exponentially Weighted N-Way Partial Least Squares (REW-NPLS) regression algorithm is proposed for high dimension multi-way (tensor) data treatment and adaptive modeling of complex processes in real-time. The method unites fast and efficient calculation schemes of the Recursive Exponentially Weighted PLS with the robustness of tensor-based approaches. Moreover, contrary to other multi-way recursive algorithms, no loss of information occurs in the REW-NPLS. In addition, the Recursive-Validation method for recursive estimation of the hyper-parameters is proposed instead of conventional cross-validation procedure. The approach was then compared to state-of-the-art methods. The efficiency of the methods was tested in electrocorticography (ECoG) and magnetoencephalography (MEG) datasets. The algorithms are implemented in software suitable for real-time operation. Although the Brain-Computer Interface applications are used to demonstrate the methods, the proposed approaches could be efficiently used in a wide range of tasks beyond neuroscience uniting complex multi-modal data structures, adaptive modeling, and real-time computational requirements.


Subject(s)
Brain-Computer Interfaces , Least-Squares Analysis , Algorithms , Electrocorticography , Electroencephalography , Magnetoencephalography , Neurosciences/methods , Software
16.
PLoS One ; 11(5): e0154878, 2016.
Article in English | MEDLINE | ID: mdl-27196417

ABSTRACT

In the current paper the decoding algorithms for motor-related BCI systems for continuous upper limb trajectory prediction are considered. Two methods for the smooth prediction, namely Sobolev and Polynomial Penalized Multi-Way Partial Least Squares (PLS) regressions, are proposed. The methods are compared to the Multi-Way Partial Least Squares and Kalman Filter approaches. The comparison demonstrated that the proposed methods combined the prediction accuracy of the algorithms of the PLS family and trajectory smoothness of the Kalman Filter. In addition, the prediction delay is significantly lower for the proposed algorithms than for the Kalman Filter approach. The proposed methods could be applied in a wide range of applications beyond neuroscience.


Subject(s)
Brain-Computer Interfaces , Electrocorticography/methods , Least-Squares Analysis , Algorithms , Calibration , Humans , Imaging, Three-Dimensional , Models, Statistical , Movement , Neurosciences , Online Systems , Reproducibility of Results , Signal Processing, Computer-Assisted
18.
J Physiol Paris ; 110(4 Pt A): 348-360, 2016 11.
Article in English | MEDLINE | ID: mdl-28288824

ABSTRACT

Brain-Computer Interfaces (BCIs) are systems which translate brain neural activity into commands for external devices. BCI users generally alternate between No-Control (NC) and Intentional Control (IC) periods. NC/IC discrimination is crucial for clinical BCIs, particularly when they provide neural control over complex effectors such as exoskeletons. Numerous BCI decoders focus on the estimation of continuously-valued limb trajectories from neural signals. The integration of NC support into continuous decoders is investigated in the present article. Most discrete/continuous BCI hybrid decoders rely on static state models which don't exploit the dynamic of NC/IC state succession. A hybrid decoder, referred to as Markov Switching Linear Model (MSLM), is proposed in the present article. The MSLM assumes that the NC/IC state sequence is generated by a first-order Markov chain, and performs dynamic NC/IC state detection. Linear continuous movement models are probabilistically combined using the NC and IC state posterior probabilities yielded by the state decoder. The proposed decoder is evaluated for the task of asynchronous wrist position decoding from high dimensional space-time-frequency ElectroCorticoGraphic (ECoG) features in monkeys. The MSLM is compared with another dynamic hybrid decoder proposed in the literature, namely a Switching Kalman Filter (SKF). A comparison is additionally drawn with a Wiener filter decoder which infers NC states by thresholding trajectory estimates. The MSLM decoder is found to outperform both the SKF and the thresholded Wiener filter decoder in terms of False Positive Ratio and NC/IC state detection error. It additionally surpasses the SKF with respect to the Pearson Correlation Coefficient and Root Mean Squared Error between true and estimated continuous trajectories.


Subject(s)
Brain-Computer Interfaces , Haplorhini/physiology , Animals , Linear Models , Probability
19.
Article in English | MEDLINE | ID: mdl-25570185

ABSTRACT

The goal of the CLINATEC® Brain Computer Interface (BCI) Project is to improve tetraplegic subjects' quality of life by allowing them to interact with their environment through the control of effectors, such as an exoskeleton. The BCI platform is based on a wireless 64-channel ElectroCorticoGram (ECoG) recording implant WIMAGINE®, designed for long-term clinical application, and a BCI software environment associated to a 4-limb exoskeleton EMY (Enhancing MobilitY). Innovative ECoG signal decoding algorithms will allow the control of the exoskeleton by the subject's brain activity. Currently, the whole BCI platform was tested in real-time in preclinical experiments carried out in nonhuman primates. In these experiments, the exoskeleton arm was controlled by means of the decoded neuronal activity.


Subject(s)
Brain-Computer Interfaces , Electrocorticography , Algorithms , Animals , Electrodes, Implanted , Electroencephalography , Exoskeleton Device , Macaca mulatta , Quality of Life , Signal Processing, Computer-Assisted
20.
PLoS One ; 8(7): e69962, 2013.
Article in English | MEDLINE | ID: mdl-23922873

ABSTRACT

In the article tensor-input/tensor-output blockwise Recursive N-way Partial Least Squares (RNPLS) regression is considered. It combines the multi-way tensors decomposition with a consecutive calculation scheme and allows blockwise treatment of tensor data arrays with huge dimensions, as well as the adaptive modeling of time-dependent processes with tensor variables. In the article the numerical study of the algorithm is undertaken. The RNPLS algorithm demonstrates fast and stable convergence of regression coefficients. Applied to Brain Computer Interface system calibration, the algorithm provides an efficient adjustment of the decoding model. Combining the online adaptation with easy interpretation of results, the method can be effectively applied in a variety of multi-modal neural activity flow modeling tasks.


Subject(s)
Algorithms , Brain-Computer Interfaces , Animals , Calibration , Haplorhini/physiology , Humans , Least-Squares Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...