Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(30): 8792-8799, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32663010

ABSTRACT

The use of porous micro-and nanostructured materials within microfluidic devices results in unique fluid transport characteristics. In this paper, we investigate the microfluidic behavior of hybrid alumina nanotube-based pathways within the hydrophobic carbon nanotube (CNT) barriers. These hybrid systems provide unique benefits for potential liquid transport control in porous structures with real-time sensing of fluids. In particular, we examine how the alignment of the alumina nanostructures with high internal porosity enables increased capillary action and sensitivity of detection. Based on the Lucas and Washburn model (LW) and the modified LW models, the microfluidic behavior of these systems is detailed. The time exponent prediction from the models for capillary transport in porous media is determined to be ≤0.5. The experimental results demonstrate that the average capillary rise in the nanostructured media driven by a capillary force follows t0.7. The hydrophilic/electrically insulating and hydrophobic/electrically conductive patterned structures of the device are used for electronic measurements within the microfluidic channels. The device structure enables the detection of fluid samples of very low analyte concentrations (1 µM) that can be achieved due to the very high surface area of the hybrid structure combined with the electrical conductivity of the CNT support structure.

2.
J Colloid Interface Sci ; 536: 655-663, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30396121

ABSTRACT

Antimony tin (SnSb) based materials have become increasingly attractive as a potential anode material for sodium-ion batteries (SIBs) owing to their prominent merit of high capacity. However, cyclic stability and rate capability of SnSb anodes are currently hindered by their large volume change during repeated cycling, which results in severe capacity fading. Herein, we introduce carbon-coated centrifugally-spun SnSb@carbon microfiber (CMF) composites as high-performance anodes for SIBs that can maintain their structural stability during repeated charge-discharge cycles. The centrifugal spinning method was performed to fabricate SnSb@CMFs due to its high speed, low cost, and large-scale fabrication features. More importantly, extra carbon coating by chemical vapor deposition (CVD) has been demonstrated as an effective method to improve the capacity retention and Coulombic efficiency of the SnSb@CMF anode. Electrochemical test results indicated that the as-prepared SnSb@CMF@C anode could deliver a large reversible capacity of 798 mA h∙g-1 at the 20th cycle as well as a high capacity retention of 86.8% and excellent Coulombic efficiency of 98.1% at the 100th cycle. It is, therefore, demonstrated that SnSb@CMF@C composite is a promising anode material candidate for future high-performance SIBs.

3.
Nanotechnology ; 29(33): 335302, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-29794331

ABSTRACT

This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.

SELECTION OF CITATIONS
SEARCH DETAIL
...