Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Optica ; 11(5)2024.
Article in English | MEDLINE | ID: mdl-38840930

ABSTRACT

In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored. Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single Si3N4 ridge waveguide integrated with an extended LiNbO3 slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.

2.
ACS Photonics ; 10(4): 945-952, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37096211

ABSTRACT

On-chip grating couplers directly connect photonic circuits to free-space light. The commonly used photonic gratings have been specialized for small areas, specific intensity profiles, and nonvertical beam projection. This falls short of the precise and flexible wavefront control over large beam areas needed to empower emerging integrated miniaturized optical systems that leverage volumetric light-matter interactions, including trapping, cooling, and interrogation of atoms, bio- and chemi- sensing, and complex free-space interconnect. The large coupler size challenges general inverse design techniques, and solutions obtained by them are often difficult to physically understand and generalize. Here, by posing the problem to a carefully constrained computational inverse-design algorithm capable of large area structures, we discover a qualitatively new class of grating couplers. The numerically found solutions can be understood as coupling an incident photonic slab mode to a spatially extended slow-light (near-zero refractive index) region, backed by a reflector. The structure forms a spectrally broad standing wave resonance at the target wavelength, radiating vertically into free space. A reflectionless adiabatic transition critically couples the incident photonic mode to the resonance, and the numerically optimized lower cladding provides 70% overall theoretical conversion efficiency. We have experimentally validated an efficient surface normal collimated emission of ≈90 µm full width at half-maximum Gaussian at the thermally tunable operating wavelength of ≈780 nm. The variable-mesh-deformation inverse design approach scales to extra large photonic devices, while directly implementing the fabrication constraints. The deliberate choice of smooth parametrization resulted in a novel type of solution, which is both efficient and physically comprehensible.

3.
Sci Adv ; 9(11): eadf7595, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36921059

ABSTRACT

Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise-limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise-limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.

4.
Nat Commun ; 14(1): 1119, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36849526

ABSTRACT

Twisted light with orbital angular momentum (OAM) has been extensively studied for applications in quantum and classical communications, microscopy, and optical micromanipulation. Ejecting high angular momentum states of a whispering gallery mode (WGM) microresonator through a grating-assisted mechanism provides a scalable, chip-integrated solution for OAM generation. However, demonstrated OAM microresonators have exhibited a much lower quality factor (Q) than conventional WGM resonators (by >100×), and an understanding of the limits on Q has been lacking. This is crucial given the importance of Q in enhancing light-matter interactions. Moreover, though high-OAM states are often desirable, the limits on what is achievable in a microresonator are not well understood. Here, we provide insight on these two questions, through understanding OAM from the perspective of mode coupling in a photonic crystal ring and linking it to coherent backscattering between counter-propagating WGMs. In addition to demonstrating high-Q (105 to 106), a high estimated upper bound on OAM ejection efficiency (up to 90%), and high-OAM number (up to l = 60), our empirical model is supported by experiments and provides a quantitative explanation for the behavior of Q and the upper bound of OAM ejection efficiency with l. The state-of-the-art performance and understanding of microresonator OAM generation opens opportunities for OAM applications using chip-integrated technologies.

5.
Phys Rev Lett ; 129(18): 186101, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36374673

ABSTRACT

Whispering gallery modes (WGMs) in circularly symmetric optical microresonators exhibit integer quantized angular momentum numbers due to the boundary condition imposed by the geometry. Here, we show that incorporating a photonic crystal pattern in an integrated microring can result in WGMs with fractional optical angular momentum. By choosing the photonic crystal periodicity to open a photonic band gap with a band-edge momentum lying between that of two WGMs of the unperturbed ring, we observe hybridized WGMs with half-integer quantized angular momentum numbers (m∈Z+1/2). Moreover, we show that these modes with fractional angular momenta exhibit high optical quality factors with good cavity-waveguide coupling and an order of magnitude reduced group velocity. Additionally, by introducing multiple artificial defects, multiple modes can be localized to small volumes within the ring, while the relative orientation of the delocalized band-edge states can be well controlled. Our Letter unveils the renormalization of WGMs by the photonic crystal, demonstrating novel fractional angular momentum states and nontrivial multimode orientation control arising from continuous rotational symmetry breaking. The findings are expected to be useful for sensing and metrology, nonlinear optics, and cavity quantum electrodynamics.

6.
Nano Lett ; 22(11): 4325-4332, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35579622

ABSTRACT

Thermal properties of materials are often determined by measuring thermalization processes; however, such measurements at the nanoscale are challenging because they require high sensitivity concurrently with high temporal and spatial resolutions. Here, we develop an optomechanical cantilever probe and customize an atomic force microscope with low detection noise ≈1 fm/Hz1/2 over a wide (>100 MHz) bandwidth that measures thermalization dynamics with ≈10 ns temporal resolution, ≈35 nm spatial resolution, and high sensitivity. This setup enables fast nanoimaging of thermal conductivity (η) and interfacial thermal conductance (G) with measurement throughputs ≈6000× faster than conventional macroscale-resolution time-domain thermoreflectance acquiring the full sample thermalization. As a proof-of-principle demonstration, 100 × 100 pixel maps of η and G of a polymer particle are obtained in 200 s with a small relative uncertainty (<10%). This work paves the way to study fast thermal dynamics in materials and devices at the nanoscale.

7.
Nat Nanotechnol ; 17(6): 583-589, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35449411

ABSTRACT

Waves entering a spatially uniform lossy medium typically undergo exponential intensity decay, arising from either the energy loss of the Beer-Lambert-Bouguer transmission law or the evanescent penetration during reflection. Recently, exceptional point singularities in non-Hermitian systems have been linked to unconventional wave propagation. Here, we theoretically propose and experimentally demonstrate exponential decay free wave propagation in a purely lossy medium. We observe up to 400-wave deep polynomial wave propagation accompanied by a uniformly distributed energy loss across a nanostructured photonic slab waveguide with exceptional points. We use coupled-mode theory and fully vectorial electromagnetic simulations to predict deep wave penetration manifesting spatially constant radiation losses through the entire structured waveguide region regardless of its length. The uncovered exponential decay free wave phenomenon is universal and holds true across all domains supporting physical waves, finding immediate applications for generating large, uniform and surface-normal free-space plane waves directly from dispersion-engineered photonic chip surfaces.

8.
Phys Rev X ; 12(4)2022.
Article in English | MEDLINE | ID: mdl-38680940

ABSTRACT

Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro- and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower-frequency mode entering, maintaining, and exiting a persistent phase-locked period-tripling state generated by the nonlinear driving force exerted by the higher-frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting nonmonotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics.

9.
Opt Express ; 29(5): 6967-6979, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726207

ABSTRACT

Key for optical microresonator engineering, the total intrinsic loss is easily determined by spectroscopy; however, quantitatively separating absorption and radiative losses is challenging, and there is not a general and robust method. Here, we propose and experimentally demonstrate a general all-optical characterization technique for separating the loss mechanisms with high confidence using only linear spectroscopic measurements and an optically measured resonator thermal time constant. We report the absorption, radiation, and coupling losses for ten whispering-gallery modes of three different radial orders on a Si microdisk. Although the total dissipation rates show order-of-magnitude differences, the small absorptive losses are successfully distinguished from the overwhelming radiation losses and show similar values for all the modes as expected for the bulk material absorption.

10.
Commun Phys ; 4(1)2021.
Article in English | MEDLINE | ID: mdl-38680632

ABSTRACT

All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically-driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically-limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈ 10-5 for τ=30µs) and measurements using thermal fluctuations alone (<10-6). Beyond nanomechanics, these results advance frequency-based metrology across physical domains.

11.
Microsyst Nanoeng ; 6: 115, 2020.
Article in English | MEDLINE | ID: mdl-33414928

ABSTRACT

In this article, we present a nanoelectromechanical system (NEMS) designed to detect changes in the Casimir energy. The Casimir effect is a result of the appearance of quantum fluctuations in an electromagnetic vacuum. Previous experiments have used nano- or microscale parallel plate capacitors to detect the Casimir force by measuring the small attractive force these fluctuations exert between the two surfaces. In this new set of experiments, we aim to directly detect the shifts in the Casimir energy in a vacuum due to the presence of the metallic parallel plates, one of which is a superconductor. A change in the Casimir energy of this configuration is predicted to shift the superconducting transition temperature (T c) because of the interaction between it and the superconducting condensation energy. In our experiment, we take a superconducting film, carefully measure its transition temperature, bring a conducting plate close to the film, create a Casimir cavity, and then measure the transition temperature again. The expected shifts are smaller than the normal shifts one sees in cycling superconducting films to cryogenic temperatures, so using a NEMS resonator in situ is the only practical way to obtain accurate, reproducible data. Using a thin Pb film and opposing Au surface, we observe no shift in T c >12 µK down to a minimum spacing of ~70 nm at zero applied magnetic field.

12.
Science ; 366(6467): 860-864, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31727832

ABSTRACT

Combining reprogrammable optical networks with complementary metal-oxide semiconductor (CMOS) electronics is expected to provide a platform for technological developments in on-chip integrated optoelectronics. We demonstrate how opto-electro-mechanical effects in micrometer-scale hybrid photonic-plasmonic structures enable light switching under CMOS voltages and low optical losses (0.1 decibel). Rapid (for example, tens of nanoseconds) switching is achieved by an electrostatic, nanometer-scale perturbation of a thin, and thus low-mass, gold membrane that forms an air-gap hybrid photonic-plasmonic waveguide. Confinement of the plasmonic portion of the light to the variable-height air gap yields a strong opto-electro-mechanical effect, while photonic confinement of the rest of the light minimizes optical losses. The demonstrated hybrid architecture provides a route to develop applications for CMOS-integrated, reprogrammable optical systems such as optical neural networks for deep learning.

13.
Light Sci Appl ; 7: 72, 2018.
Article in English | MEDLINE | ID: mdl-30323924

ABSTRACT

Integration of photonic chips with millimeter-scale atomic, micromechanical, chemical, and biological systems can advance science and enable new miniaturized hybrid devices and technology. Optical interaction via small evanescent volumes restricts performance in applications such as gas spectroscopy, and a general ability to photonically access optical fields in large free-space volumes is desired. However, conventional inverse tapers and grating couplers do not directly scale to create wide, high-quality collimated beams for low-loss diffraction-free propagation over many millimeters in free space, necessitating additional bulky collimating optics and expensive alignment. Here, we develop an extreme mode converter, which is a compact planar photonic structure that efficiently couples a 300 nm × 250 nm silicon nitride high-index single-mode waveguide to a well-collimated near surface-normal Gaussian beam with an ≈160 µm waist, which corresponds to an increase in the modal area by a factor of >105. The beam quality is thoroughly characterized, and propagation over 4 mm in free space and coupling back into a single-mode photonic waveguide with low loss via a separate identical mode converter is demonstrated. To achieve low phase error over a beam area that is >100× larger than that of a typical grating coupler, our approach separates the two-dimensional mode expansion into two sequential separately optimized stages, which create a fully expanded and well-collimated Gaussian slab mode before out-coupling it into free space. Developed at 780 nm for integration with chip-scale atomic vapor cell cavities, our design can be adapted for visible, telecommunication, or other wavelengths. The technique can be expanded to more arbitrary phase and intensity control of both large-diameter, free-space optical beams and wide photonic slab modes.

14.
Phys Rev Lett ; 121(26): 264301, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30636140

ABSTRACT

We investigate the collective dynamics and nondegenerate parametric resonance (NPR) of coplanar, interdigitated arrays of microcantilevers distinguished by their cantilevers having linearly expanding lengths and thus varying natural frequencies. Within a certain excitation frequency range, the resonators begin oscillating via NPR across the entire array consisting of 200 single-crystal silicon cantilevers. Tunable coupling generated from fringing electrostatic fields provides a mechanism to vary the scope of the NPR. Our experimental results are supported by a reduced-order model that reproduces the leading features of our data including the NPR band. The potential for tailoring the coupled response of suspended mechanical structures using NPR presents new possibilities in mass, force, and energy sensing applications, energy harvesting devices, and optomechanical systems.

15.
Light Sci Appl ; 7: 31, 2018.
Article in English | MEDLINE | ID: mdl-30839614

ABSTRACT

The common assumption that precision is the limit of accuracy in localization microscopy and the typical absence of comprehensive calibration of optical microscopes lead to a widespread issue-overconfidence in measurement results with nanoscale statistical uncertainties that can be invalid due to microscale systematic errors. In this article, we report a comprehensive solution to this underappreciated problem. We develop arrays of subresolution apertures into the first reference materials that enable localization errors approaching the atomic scale across a submillimeter field. We present novel methods for calibrating our microscope system using aperture arrays and develop aberration corrections that reach the precision limit of our reference materials. We correct and register localization data from multiple colors and test different sources of light emission with equal accuracy, indicating the general applicability of our reference materials and calibration methods. In a first application of our new measurement capability, we introduce the concept of critical-dimension localization microscopy, facilitating tests of nanofabrication processes and quality control of aperture arrays. In a second application, we apply these stable reference materials to answer open questions about the apparent instability of fluorescent nanoparticles that commonly serve as fiducial markers. Our study establishes a foundation for subnanometer localization accuracy in widefield optical microscopy.

16.
Article in English | MEDLINE | ID: mdl-30984799

ABSTRACT

Plasmomechanical systems - formed by introducing a mechanically compliant gap between metallic nanostructures - produce large optomechanical interactions that can be localized to deep subwavelength volumes. This unique ability opens a new path to study optomechanics in nanometer-scale regimes inaccessible by other methods. We show that the localized optomechanical interactions produced by plasmomechanics can be used to spatially map the displacement modes of a vibrating nanomechanical system with a resolution exceeding the diffraction limit. Furthermore, we use white light illumination for motion transduction instead of a monochromatic laser, and develop a semi-analytical model matching the changes in optomechanical coupling constant and motion signal strength observed in a broadband transduction experiment. Our results clearly demonstrate the key benefit of localized and broadband performance provided by plasmomechanical systems, which may enable future nano-scale sensing and wafer-scale metrology applications.

17.
Anal Chem ; 89(24): 13524-13531, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29165992

ABSTRACT

Photothermal induced resonance (PTIR), also known as AFM-IR, is a scanning probe technique that provides sample composition information with a lateral resolution down to 20 nm. Interest in PTIR stems from its ability to identify unknown samples at the nanoscale thanks, in first approximation, to the direct comparability of PTIR spectra with far-field infrared databases. The development of rapidly tuning quantum cascade lasers has increased the PTIR throughput considerably, making nanoscale hyperspectral imaging within a reasonable time frame possible. Consequently, a better understanding of PTIR signal generation and of the fine details of PTIR analysis has become of paramount importance for extending complex IR analysis methods developed in the far-field, e.g., for classification and hyperspectral imaging, to nanoscale PTIR spectra. Here we calculate PTIR spectra via thin-film optics, to identify subtle changes (band shifts, deviation from linear approximation, etc.) for common sample parameters in the case of PTIR with total internal reflection illumination. Results show signal intensity linearity and small band shifts as long as the sample is prepared correctly, with band shifts typically smaller than macroscale attenuated total reflection (ATR) spectroscopy. Finally, a generally applicable algorithm to retrieve the pure imaginary component of the refractive index (i.e., the chemically specific information) is provided to overcome the PTIR spectra nonlinearity.

18.
Nat Nanotechnol ; 12(10): 940-941, 2017 10.
Article in English | MEDLINE | ID: mdl-28892103
19.
Nano Lett ; 17(9): 5587-5594, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28770607

ABSTRACT

The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscale in photothermal induced resonance experiments. The intrinsic η of metal-organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. Our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.

20.
Nat Commun ; 7: 13746, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27922019

ABSTRACT

Plasmonic structures couple oscillating electromagnetic fields to conduction electrons in noble metals and thereby can confine optical-frequency excitations at nanometre scales. This confinement both facilitates miniaturization of nanophotonic devices and makes their response highly sensitive to mechanical motion. Mechanically coupled plasmonic devices thus hold great promise as building blocks for next-generation reconfigurable optics and metasurfaces. However, a flexible approach for accurately batch-fabricating high-performance plasmomechanical devices is currently lacking. Here we introduce an architecture integrating individual plasmonic structures with precise, nanometre features into tunable mechanical resonators. The localized gap plasmon resonators strongly couple light and mechanical motion within a three-dimensional, sub-diffraction volume, yielding large quality factors and record optomechanical coupling strength of 2 THz·nm-1. Utilizing these features, we demonstrate sensitive and spatially localized optical transduction of mechanical motion with a noise floor of 6 fm·Hz-1/2, representing a 1.5 orders of magnitude improvement over existing localized plasmomechanical systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...