Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Med Imaging Graph ; 113: 102346, 2024 04.
Article in English | MEDLINE | ID: mdl-38364600

ABSTRACT

This study conducts collateral evaluation from ischemic damage using a deep learning-based Siamese network, addressing the challenges associated with a small and imbalanced dataset. The collateral network provides an alternative oxygen and nutrient supply pathway in ischemic stroke cases, influencing treatment decisions. Research in this area focuses on automated collateral assessment using deep learning (DL) methods to expedite decision-making processes and enhance accuracy. Our study employed a 3D ResNet-based Siamese network, referred to as SCANED, to classify collaterals as good/intermediate or poor. Utilizing non-contrast computed tomography (NCCT) images, the network automates collateral identification and assessment by analyzing tissue degeneration around the ischemic site. Relevant features from the left/right hemispheres were extracted, and Euclidean Distance (ED) was employed for similarity measurement. Finally, dichotomized classification of good/intermediate or poor collateral is performed by SCANED using an optimal threshold derived from ROC analysis. SCANED provides a sensitivity of 0.88, a specificity of 0.63, and a weighted F1 score of 0.86 in the dichotomized classification.


Subject(s)
Brain Ischemia , Ischemic Stroke , ROC Curve , Brain Ischemia/diagnosis , Deep Learning , Ischemic Stroke/diagnosis , Humans
2.
Int J Comput Assist Radiol Surg ; 18(4): 733-740, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36635594

ABSTRACT

PURPOSE: Collateral evaluation is typically done using visual inspection of cerebral images and thus suffers from intra- and inter-rater variability. Large open databases of ischemic stroke patients are rare, limiting the use of deep learning methods in treatment decision-making. METHODS: We adapted a pre-trained EfficientNet B0 network through transfer learning to improve collateral evaluation using slice-based and subject-level classification. Our method uses stacking and overlapping of 2D slices from a patient's 4D computed tomography angiography (CTA) and a majority voting scheme to determine a patient's final collateral grade based on all classified 2D MIPs. Class imbalance is handled in the evaluation process by using the focal loss with class weight to penalize the majority class. RESULTS: We evaluated our method using a nine-fold cross-validation performed with 83 subjects. Mean sensitivity of 0.71, specificity of 0.84, and a weighted F1 score of 0.71 in multi-class (good, intermediate, and poor) classification were obtained. Considering treatment effect, a dichotomized decision is also made for collateral scoring of a subject based on two classes (good/intermediate and poor) which achieves a sensitivity of 0.89 and specificity of 0.96 with a weighted F1 score of 0.95. CONCLUSION: An automatic and robust collateral assessment method that mitigates the issues with the small imbalanced dataset was developed. Computer-aided evaluation of collaterals can help decision-making of ischemic stroke treatment strategy in clinical settings.


Subject(s)
Brain Ischemia , Deep Learning , Ischemic Stroke , Stroke , Humans , Stroke/diagnostic imaging , Stroke/therapy , Cerebral Angiography/methods , Computed Tomography Angiography/methods , Four-Dimensional Computed Tomography/methods , Brain Ischemia/diagnostic imaging , Brain Ischemia/therapy , Retrospective Studies
3.
Int J Comput Assist Radiol Surg ; 15(9): 1501-1511, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32662055

ABSTRACT

PURPOSE: Sufficient collateral blood supply is crucial for favorable outcomes with endovascular treatment. The current practice of collateral scoring relies on visual inspection and thus can suffer from inter and intra-rater inconsistency. We present a robust and automatic method to score cerebral collateral blood supply to aid ischemic stroke treatment decision making. The developed method is based on 4D dynamic CT angiography (CTA) and the ASPECTS scoring protocol. METHODS: The proposed method, ACCESS (Automatic Collateral Circulation Evaluation in iSchemic Stroke), estimates a target patient's unfilled cerebrovasculature in contrast-enhanced CTA using the lack of contrast agent due to clotting. To do so, the fast robust matrix completion algorithm with in-face extended Frank-Wolfe optimization is applied on a cohort of healthy subjects and a target patient, to model the patient's unfilled vessels and the estimated full vasculature as sparse and low-rank components, respectively. The collateral score is computed as the ratio of the unfilled vessels to the full vasculature, mimicking existing clinical protocols. RESULTS: ACCESS was tested with 46 stroke patients and obtained an overall accuracy of 84.78%. The optimal threshold selection was evaluated using a receiver operating characteristics curve with the leave-one-out approach, and a mean area under the curve of 85.39% was obtained. CONCLUSION: ACCESS automates collateral scoring to mitigate the shortcomings of the standard clinical practice. It is a robust approach, which resembles how radiologists score clinical scans, and can be used to help radiologists in clinical decisions of stroke treatment.


Subject(s)
Brain Ischemia/diagnostic imaging , Cerebral Angiography , Collateral Circulation , Computed Tomography Angiography , Diagnosis, Computer-Assisted/methods , Four-Dimensional Computed Tomography , Ischemic Stroke/diagnostic imaging , Aged , Algorithms , Decision Making , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Machine Learning , Male , Middle Aged , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...