Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018375

ABSTRACT

Introducing functionality onto PE surfaces is a longstanding challenge in polymer science, driven by the need for polymer materials with improved adhesion and antifouling properties. Herein, we report surface-initiated hydrogen atom transfer-reversible addition-fragmentation chain transfer (SI HAT-RAFT) as a robust method to grow high-density brush polymers from PE surfaces. We demonstrate that, under mild conditions, direct initiation from the C-H bonds of PE surfaces allows for the graft polymerization of a variety of (meth)acrylate monomers. The resulting polymer brushes reached several hundred nanometers in thickness with densities of ca. 0.62 chains/nm2, compared to the current standard of ∼0.28 chains/nm2. Finally, we show that our method is capable of dramatically improving the adhesive properties of PE surfaces. This work enables the preparation of PE with diverse surface functionalities for potential use in biomedical, industrial, and battery applications.

2.
Small ; 20(22): e2309040, 2024 May.
Article in English | MEDLINE | ID: mdl-38334235

ABSTRACT

Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.


Subject(s)
Boronic Acids , Glucose , Polymers , Surface Properties , Glucose/chemistry , Polymers/chemistry , Boronic Acids/chemistry , Microscopy, Atomic Force , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...