Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 29(17): 2671-6, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17313108

ABSTRACT

A method based on ion chromatography (IC) and inductively coupled plasma MS (ICP-MS) was developed for the speciation of arsenic in water and soil extracts. An anion-exchange column (G3154A/101) was used to separate As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) with excellent resolution. Various ammonium salts, including NH4H2PO4, (NH4)2HPO4, (NH4)2CO3, and NH4HCO3, were examined as eluents to reduce matrix interference from chloride and to solve clogging problems. The best arsenic speciation was obtained within 9 min with excellent resolution and without interference from high chloride concentrations using an eluent containing 7.5 mM (NH4)2HPO4 at pH 7.9. The detection limits for the target arsenic species ranged from 0.1 to 0.4 microg/L with direct injection of sample without matrix elimination. The proposed method was effectively demonstrated by determining arsenic species in contaminated waters and soils of Bangladesh.


Subject(s)
Arsenic/chemistry , Mass Spectrometry , Quaternary Ammonium Compounds , Arsenic/classification , Chromatography, Ion Exchange
2.
Rev Environ Contam Toxicol ; 184: 97-149, 2005.
Article in English | MEDLINE | ID: mdl-15790174

ABSTRACT

Although it is now commonly accepted that toxicity and bioavailability varies with As species, extensive research has been carried out on biological and environmental samples to assess toxicity and risk associated with As exposure based on total concentrations that may be in error. The health investigation guideline for the Australian environmental protection measure is 100 mg/kg (As(tot)), which would cause potential risk to human health if all the As present in a sample were bioavailable (ANZECC 1992). Similarly, the MPC for As in food is 1 mg/ kg (fresh weight), but this concentration may include contributions from As(III), AsV, and all organic species. Thus, a food substance, such as seafood, could have a high total concentration exceeding the guidelines, but most of the As would be in forms that are nontoxic to humans; i.e., the bioavailability is low, and the food would therefore be perfectly safe to eat. On the other hand, a food that has high bioavailability of As consequently is more toxic. Overall, it appears that contamination of water by As is probably more harmful to humans than As in food grains or vegetables, because As bioavailability in water is generally higher than its bioavailability in food. Nevertheless, As in food crops could make significant contribution toward total daily intake. Therefore, failure to consider the contribution of As species on their bioavailability could introduce a substantial bias into the estimation of risks associated with exposure as well as evaluation of As toxicity. In conclusion, As must be regarded as an important environmental toxicant because of its acute and chronic toxic properties and extensive presence in the environment. Much remains to be learned about its toxicology and biochemistry for better understanding of this important contaminant.


Subject(s)
Arsenic , Environmental Pollutants , Food Contamination , Animals , Arsenic/chemistry , Arsenic/pharmacokinetics , Arsenic/toxicity , Biological Availability , Environmental Monitoring , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/toxicity , Food Analysis , Humans , Plants/drug effects , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...