Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Circ ; 10(2): 145-153, 2024.
Article in English | MEDLINE | ID: mdl-39036296

ABSTRACT

INTRODUCTION: Different types of diseases have been treated by restricted caloric intake or fasting. Although during this long time, fasting protective measures, for example, supplements, are given to the patients to protect vital organs such as the liver and kidney, little attention is given to the brain. The current research aims to investigate hypoglycemia due to prolonged fasting disrupts blood-brain barrier (BBB) in mice. MATERIALS AND METHODS: Immunohistochemistry (IHC) and in situ hybridization (ISH) techniques were used to examine the expression of different genes. Evans blue extravasation and wet-dry technique were performed to evaluate the integrity of BBB and the formation of brain edema, respectively. RESULTS: We confirmed that hypoglycemia affected mice fasting brain by examining the increased expression of glucose transporter protein 1 and hyperphosphorylation of tau protein. We subsequently found downregulated expression of some genes, which are involved in maintaining BBB such as vascular endothelial growth factor (VEGF) in astrocytes and claudin-5 (a vital component of BBB) and VEGF receptor (VEGFR1) in endothelial cells by ISH. We also found that prolonged fasting caused the brain endothelial cells to express lipocalin-2, an inflammatory marker of brain endothelial cells. We performed Evans blue extravasation to show more dye was retained in the brain of fasted mice than in control mice as a result of BBB disruption. Finally, wet-dry method showed that the brain of prolonged fasted mice contained significantly higher amount of water confirming the formation of brain edema. Therefore, special attention should be given to the brain during treatment with prolonged fasting for various diseases. CONCLUSIONS: Our results demonstrated that hypoglycemia due to prolonged fasting disrupts BBB and produces brain edema in wild-type mice, highlighting the importance of brain health during treatment with prolonged fasting.

SELECTION OF CITATIONS
SEARCH DETAIL
...