Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 6040, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727682

ABSTRACT

Zinc (Zn) deficiency hinders growth and development in tomato. This study unveils the responses of how Zn starvation affects physiological and molecular processes in tomato. Zn deficiency negatively affected the biomass, cellular integrity, and chlorophyll synthesis in tomato. Also, Zn deficiency decreased the maximum yield of PSII, photosynthesis performance index and dissipation energy per active reaction center, although the antenna size, trapping energy efficiency and electron transport flux were stable in Zn-starved leaves. Further, Zn shortage caused a substantial reduction in Zn and Fe concentrations in both roots and shoots along with decreased root Fe-reductase activity accompanied by the downregulation of Fe-regulated transporter 1, Zn transporter-like (LOC100037509), and Zn transporter (LOC101255999) genes predicted to be localized in the root plasma membrane. The interactome partners of these Zn transporters are predominantly associated with root-specific metal transporter, ferric-chelate reductase, BHLH transcriptional regulator, and Zn metal ion transporters, suggesting that Zn homeostasis may be tightly linked to the Fe status along with BHLH transcription factor in Zn-deficient tomato. We also noticed elevated O2.- and H2O2 due to Zn deficiency which was consistent with the inefficient antioxidant properties. These findings will be useful in the downstream approach to improve vegetable crops sensitive to Zn-deficiency.


Subject(s)
Carrier Proteins/biosynthesis , Down-Regulation , Gene Expression Regulation, Plant , Iron/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Solanum lycopersicum/metabolism , Zinc/deficiency , Plant Leaves/metabolism
2.
Plant Physiol Biochem ; 136: 22-33, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30639786

ABSTRACT

Excess cadmium (Cd) is a serious threat to agriculture and the environment. High Cd availability showed no significant decline in growth, chlorophyll synthesis, soluble protein, cell and membrane stability in Sonarbangla (Cd-tolerant), while these were severely affected in BRRI 72 (Cd-sensitive). Atomic absorption spectroscopy analysis demonstrated a huge increment of Cd and Fe in root and shoot of BRRI 72; however, Sonarbangla only exhibited a significant increase of Cd in roots. It suggests that excess Cd in Sonarbangla possibly retained in roots through vacuolar sequestration without interfering cell functions. This was further confirmed by the increased accumulation of cysteine, glutathione, and phytochelatin along with OsPCS1 and OsHMA3 upregulation, possibly facilitated by nitric oxide in roots of Sonarbangla. Further, Fe chelate reductase activity in conjunction with the genes (OsFRO1, OsNRAMP1, OsIRT1, and OsYSL15) associated with Fe availability significantly upregulated in BRRI 72 but not in Sonarbangla in response to Cd. It advises that Fe acquisition and transport were tightly regulated in Cd-tolerant Sonarbangla. Furthermore, elevated CAT, APX, GR, NO in root along with shoot sugar helps rice plants to withstand Cd-induced oxidative damage. Finally, reciprocal grafting combining Sonarbangla rootstock with either BRRI 72 or Sonarbangla scion showed Sonarbangla type tolerance along with no changes of H2O2 and Fe reductase activity in roots under high Cd. It indicates that the signal inducing the responses to adjust Cd stress is originated in the root system. These messages deliver essential background for further breeding program to produce Cd-free rice.


Subject(s)
Cadmium/metabolism , Iron/metabolism , Oryza/metabolism , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Cadmium/toxicity , Chlorophyll/metabolism , FMN Reductase/metabolism , Gene Expression/drug effects , Nitric Oxide/metabolism , Oryza/drug effects , Plant Roots/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...