Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(1): 463-473, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38092669

ABSTRACT

A straightforward cross-dehydrogenative coupling approach to incorporate alicyclic amino residues into the structure of model cyclic aldonitrones, 2H-imidazole oxides, is reported. The elaborated C(sp2)-H functionalization is achieved by employing cyclic amines in the presence of the I2-tert-butyl hydroperoxide (TBHP) reagent system. As a result, a series of 19 novel heterocyclic derivatives were obtained in yields of up to 97%. A mechanistic study involving electron paramagnetic resonance spectroscopic experiments allowed the radical nature of the reaction to be confirmed. In particular, the envisioned mechanistic rationale comprises N-iodination of a cyclic amine, followed by N-I bond homolysis of the resulting intermediate and subsequent amination of the nitrone moiety via the newly generated nitrogen-centered radical.

2.
RSC Adv ; 12(15): 9323-9341, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424878

ABSTRACT

2,7-Diazapyrenes are promising azaaromatic scaffolds with a unique structural geometry and supramolecular properties. This core moiety and its derivatives with some N-methyl cations like N-methyl-2,7,-diazapyrenium, and N,N'-dimethyl-2,7-diazapyrenium attract special attention due to their challenging photophysical properties, especially in the context of interactions with DNA and some of its mononucleotides. This review focuses on the analysis of the main synthetic approaches to 2,7-diazapyrene and its functional derivatives employing various strategies under different reaction conditions. The opportunities of applications of 2,7-diazapyrenes, including their remarkable photophysical and supramolecular properties, DNA-bindings, in sensors, molecular electronics, supramolecular systems, and related areas are also highlighted.

3.
Org Biomol Chem ; 19(2): 297-312, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33026389

ABSTRACT

Direct C(sp2)-H functionalization of the endocyclic azomethine and aldonitrone moieties in non-aromatic azaheterocycles has established itself as a promising methodology over the last decade. Transition metal-catalyzed cross-coupling reactions, α-metalation-electrophile quenching protocols, and (metal-free) nucleophilic substitution of hydrogen reactions (SNH) are the major routes applied on cyclic imines and their derivatives. In this overview, we show the tangible progress made in this area during the period from 2008 to 2020.

4.
ACS Omega ; 4(1): 825-834, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459361

ABSTRACT

The C(sp2)-H bond functionalization methodology was first applied to carry out the palladium-catalyzed oxidative C-H/C-H coupling reactions of 2H-imidazole 1-oxides with pyrroles and thiophenes. As a result, a number of novel 5-heteroarylated 2H-imidazole 1-oxides, which are of particular interest in the design of bioactive molecules and advanced materials, have been synthesized in yields up to 78%. The detailed H/D-exchange experiments have also been performed to elucidate some mechanistic features of this cross-dehydrogenative coupling process.

SELECTION OF CITATIONS
SEARCH DETAIL
...