Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11502, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769353

ABSTRACT

Astronauts travelling in space will be exposed to mixed beams of particle radiation and photons. Exposure limits that correspond to defined cancer risk are calculated by multiplying absorbed doses by a radiation-type specific quality factor that reflects the biological effectiveness of the particle without considering possible interaction with photons. We have shown previously that alpha radiation and X-rays may interact resulting in synergistic DNA damage responses in human peripheral blood lymphocytes but the level of intra-individual variability was high. In order to assess the variability and validate the synergism, blood from two male donors was drawn at 9 time points during 3 seasons of the year and exposed to 0-2 Gy of X-rays, alpha particles or 1:1 mixture of both (half the dose each). DNA damage response was quantified by chromosomal aberrations and by mRNA levels of 3 radiation-responsive genes FDXR, CDKN1A and MDM2 measured 24 h post exposure. The quality of response in terms of differential expression of alternative transcripts was assessed by using two primer pairs per gene. A consistently higher than expected effect of mixed beams was found in both donors for chromosomal aberrations and gene expression with some seasonal variability for the latter. No synergy was detected for alternative transcription.


Subject(s)
Chromosome Aberrations , Lymphocytes , Radiation, Ionizing , Humans , Lymphocytes/radiation effects , Lymphocytes/metabolism , Male , Chromosome Aberrations/radiation effects , X-Rays/adverse effects , DNA Damage , Space Flight , Alpha Particles/adverse effects , Transcription, Genetic/radiation effects , Adult , Gene Expression Regulation/radiation effects , Dose-Response Relationship, Radiation
2.
Sci Rep ; 13(1): 14891, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37689722

ABSTRACT

Evidence on the impact of chemotherapy on radiotherapy-induced second malignant neoplasms is controversial. We estimated how cisplatin modulates the in vitro response of two normal cell types to fractionated radiation. AHH-1 lymphoblasts and VH10 fibroblasts were irradiated at 1 Gy/fraction 5 and 3 times per week during 12 and 19 days, respectively, and simultaneously treated with 0.1, 0.2, 0.4, 0.8, 1.7 and 3.3 µM of cisplatin twice a week. Cell growth during treatment was monitored. Cell growth/cell death and endpoints related to accumulation of DNA damage and, thus, carcinogenesis, were studied up to 21 days post treatment in cells exposed to radiation and the lowest cisplatin doses. Radiation alone significantly reduced cell growth. The impact of cisplatin alone below 3.3 µM was minimal. Except the lowest dose of cisplatin in VH10 cells, cisplatin reduced the inhibitory effect of radiation on cell growth. Delayed cell death was highest in the combination groups while the accumulation of DNA damage did not reveal a clear pattern. In conclusion, fractionated, concomitant exposure to radiation and cisplatin reduces the inhibitory effect of radiation on cell proliferation of normal cells and does not potentiate delayed effects resulting from accumulation of DNA damage.


Subject(s)
Cisplatin , DNA Damage , Humans , Cisplatin/pharmacology , Carcinogenesis , Cell Cycle , Cell Proliferation
3.
DNA Repair (Amst) ; 130: 103554, 2023 10.
Article in English | MEDLINE | ID: mdl-37595330

ABSTRACT

Cells exposed to densely ionising high and scattered low linear energy transfer (LET) radiation (50 % dose of each) react more strongly than to the same dose of each separately. The relationship between DNA double strand break location inside the nucleus and chromatin structure was evaluated, using high-resolution transmission electron microscopy (TEM) in breast cancer MDA-MB-231 cells at 30 min post 5 Gy. Additionally, response to high and/or low LET radiation was assessed using single (1 ×1.5 Gy) versus fractionated dose delivery (5 ×0.3 Gy). By TEM analysis, the highest total number of γH2AX nanobeads were found in cells irradiated with alpha radiation just prior to gamma radiation (called mixed beam), followed by alpha, then gamma radiation. γH2AX foci induced by mixed beam radiation tended to be surrounded by open chromatin (lighter TEM regions), yet foci containing the highest number of beads, i.e. larger foci representing complex damage, remained in the heterochromatic areas. The γH2AX large focus area was also greater in mixed beam-treated cells when analysed by immunofluorescence. Fractionated mixed beams given daily induced the strongest reduction in cell viability and colony formation in MDA-MB-231 and osteosarcoma U2OS cells compared to the other radiation qualities, as well as versus acute exposure. This may partially be explained by recurring low LET oxidative DNA damage by every fraction together with a delay in recompaction of chromatin after high LET, demonstrated by low levels of heterochromatin marker H3K9me3 at 2 h after the last mixed beam fraction in MDA-MB-231. In conclusion, early differences in response to complex DNA damage may lead to a stronger cell kill induced by fractionated exposure, which suggest a therapeutic potential of combined high and low LET irradiation.


Subject(s)
DNA Repair , Radiation Exposure , DNA Breaks, Double-Stranded , DNA Damage , Chromatin , Dose-Response Relationship, Radiation
4.
Front Public Health ; 11: 1297942, 2023.
Article in English | MEDLINE | ID: mdl-38162630

ABSTRACT

Introduction: Experimental studies complement epidemiological data on the biological effects of low doses and dose rates of ionizing radiation and help in determining the dose and dose rate effectiveness factor. Methods: Human VH10 skin fibroblasts exposed to 25, 50, and 100 mGy of 137Cs gamma radiation at 1.6, 8, 12 mGy/h, and at a high dose rate of 23.4 Gy/h, were analyzed for radiation-induced short- and long-term effects. Two sample cohorts, i.e., discovery (n = 30) and validation (n = 12), were subjected to RNA sequencing. The pool of the results from those six experiments with shared conditions (1.6 mGy/h; 24 h), together with an earlier time point (0 h), constituted a third cohort (n = 12). Results: The 100 mGy-exposed cells at all abovementioned dose rates, harvested at 0/24 h and 21 days after exposure, showed no strong gene expression changes. DMXL2, involved in the regulation of the NOTCH signaling pathway, presented a consistent upregulation among both the discovery and validation cohorts, and was validated by qPCR. Gene set enrichment analysis revealed that the NOTCH pathway was upregulated in the pooled cohort (p = 0.76, normalized enrichment score (NES) = 0.86). Apart from upregulated apical junction and downregulated DNA repair, few pathways were consistently changed across exposed cohorts. Concurringly, cell viability assays, performed 1, 3, and 6 days post irradiation, and colony forming assay, seeded just after exposure, did not reveal any statistically significant early effects on cell growth or survival patterns. Tendencies of increased viability (day 6) and reduced colony size (day 21) were observed at 12 mGy/h and 23.4 Gy/min. Furthermore, no long-term changes were observed in cell growth curves generated up to 70 days after exposure. Discussion: In conclusion, low doses of gamma radiation given at low dose rates had no strong cytotoxic effects on radioresistant VH10 cells.


Subject(s)
Radiation Exposure , Radiation, Ionizing , Humans , Dose-Response Relationship, Radiation , Gamma Rays , Fibroblasts/radiation effects , Radiation Exposure/adverse effects
5.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36361653

ABSTRACT

Predicting the risk of second malignant neoplasms is complicated by uncertainties regarding the shape of the dose-response relationship at high doses. Limited understanding of the competitive relationship between cell killing and the accumulation of DNA lesions at high doses, as well as the effects of other modulatory factors unique to radiation exposure during radiotherapy, such as dose heterogeneity across normal tissue and dose fractionation, contribute to these uncertainties. The aim of this study was to analyze the impact of fractionated irradiations on two cell systems, focusing on the endpoints relevant for cancer induction. To simulate the heterogeneous dose distribution across normal tissue during radiotherapy, exponentially growing VH10 fibroblasts and AHH-1 lymphoblasts were irradiated with 9 and 12 fractions (VH10) and 10 fractions (AHH-1) at 0.25, 0.5, 1, or 2 Gy per fraction. The effects on cell growth, cell survival, radiosensitivity and the accumulation of residual DNA damage lesions were analyzed as functions of dose per fraction and the total absorbed dose. Residual γH2AX foci and other DNA damage markers (micronuclei, nuclear buds, and giant nuclei) were accumulated at high doses in both cell types, but in a cell type-dependent manner. The competitive relationship between cell killing and the accumulation of carcinogenic DNA damage following multifractional radiation exposure is cell type-specific.


Subject(s)
DNA Damage , Radiation Exposure , Dose-Response Relationship, Radiation , Radiation Tolerance/physiology , Dose Fractionation, Radiation
6.
Cells ; 10(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34685687

ABSTRACT

Gynaecologic cancers are common among women and treatment includes surgery, radiotherapy or chemotherapy, where the last two methods induce DNA damage in non-targeted cells like peripheral blood lymphocytes (PBL). Damaged normal cells can transform leading to second malignant neoplasms (SMN) but the level of risk and impact of risk modifiers is not well defined. We investigated how radiotherapy alone or in combination with chemotherapy induce DNA damage in PBL of cervix and endometrial cancer patients during therapy. Blood samples were collected from nine endometrial cancer patients (treatment with radiotherapy + chemotherapy-RC) and nine cervical cancer patients (treatment with radiotherapy alone-R) before radiotherapy, 3 weeks after onset of radiotherapy and at the end of radiotherapy. Half of each blood sample was irradiated ex vivo with 2 Gy of gamma radiation in order to check how therapy influenced the sensitivity of PBL to radiation. Analysed endpoints were micronucleus (MN) frequencies, apoptosis frequencies and cell proliferation index. The results were characterised by strong individual variation, especially the MN frequencies and proliferation index. On average, despite higher total dose and larger fields, therapy alone induced the same level of MN in PBL of RC patients as compared to R. This result was accompanied by a higher level of apoptosis and stronger inhibition of cell proliferation in RC patients. The ex vivo dose induced fewer MN, more apoptosis and more strongly inhibited proliferation of PBL of RC as compared to R patients. These results are interpreted as evidence for a sensitizing effect of chemotherapy on radiation cytotoxicity. The possible implications for the risk of second malignant neoplasms are discussed.


Subject(s)
Cisplatin/therapeutic use , Genital Neoplasms, Female/blood , Genital Neoplasms, Female/radiotherapy , Lymphocytes/pathology , Micronuclei, Chromosome-Defective , Neoplasms, Second Primary/blood , Apoptosis/drug effects , Apoptosis/radiation effects , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cisplatin/pharmacology , Female , Genital Neoplasms, Female/drug therapy , Humans , Micronuclei, Chromosome-Defective/drug effects , Micronuclei, Chromosome-Defective/radiation effects , Middle Aged , Risk Factors
7.
Int J Radiat Biol ; 97(4): 541-552, 2021.
Article in English | MEDLINE | ID: mdl-33395328

ABSTRACT

PURPOSE: Uncertainties regarding the magnitude of health effects following exposure to low doses of ionizing radiation remain a matter of concern both for professionals and for the public. There is consensus within the international radiation research community that more research is required on biological effects of radiation doses below 100 mGy applied at low dose rates. Moreover, there is a demand for increasing education and training of future radiation researchers and regulators. Research, education and training is primarily carried out at universities but university-based radiation research is often hampered by limited access to radiation sources. The aim of the present report is to describe small and cost-effective low activity gamma and alpha sources that can easily be installed and used in university laboratories. METHODS AND RESULTS: A gamma radiation source was made from an euxenite-(Y) rock (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6) that was found in an abandoned mine in Sweden. It allows exposing cells grown in culture dishes to radiation at a dose rate of 50 µGy/h and lower. Three alpha sources were custom-made and yield a dose rate of 1 mGy/h each. The construction, dosimetry and cellular effects of the sources are described. CONCLUSIONS: We hope that the report will stimulate research and training activities in the low dose field by facilitating access to radiation sources.


Subject(s)
Alpha Particles/adverse effects , Gamma Rays/adverse effects , Radiation Dosage , Radiation Protection , Radiobiology/methods , Uncertainty
8.
Radiat Environ Biophys ; 59(3): 451-460, 2020 08.
Article in English | MEDLINE | ID: mdl-32488310

ABSTRACT

Many experimental studies are carried out to compare biological effectiveness of high dose rate (HDR) with that of low dose rate (LDR). The rational for this is the uncertainty regarding the value of the dose rate effectiveness factor (DREF) used in radiological protection. While a LDR is defined as 0.1 mGy/min or lower, anything above that is seen as HDR. In cell and animal experiments, a dose rate around 1 Gy/min is usually used as representative for HDR. However, atomic bomb survivors, the reference cohort for radiological protection, were exposed to tens of Gy/min. The important question is whether gamma radiation delivered at very high dose rate (VHDR-several Gy/min) is more effective in inducing DNA damage than that delivered at HDR. The aim of this investigation was to compare the biological effectiveness of gamma radiation delivered at VHDR (8.25 Gy/min) with that of HDR (0.38 Gy/min or 0.79 Gy/min). Experiments were carried out with human peripheral mononuclear cells (PBMC) and the human osteosarcoma cell line U2OS. Endpoints related to DNA damage response were analysed. The results show that in PBMC, VHDR is more effective than HDR in inducing gene expression and micronuclei. In U2OS cells, the repair of 53BP1 foci was delayed after VHDR indicating a higher level of damage complexity, but no VHDR effect was observed at the level of micronuclei and clonogenic cell survival. We suggest that the DREF value may be underestimated when the biological effectiveness of HDR and LDR is compared.


Subject(s)
Cesium Radioisotopes/adverse effects , Gamma Rays/adverse effects , Relative Biological Effectiveness , Adult , Cell Line , DNA Damage , Dose-Response Relationship, Radiation , Female , Humans , Leukocytes, Mononuclear/metabolism , Micronuclei, Chromosome-Defective , Radiation Protection , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...