Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 23(9): 101477, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32916085

ABSTRACT

Gut microbiota impacts the host metabolome and affects its health span. How bacterial species in the gut influence age-dependent metabolic alteration has not been elucidated. Here we show in Drosophila melanogaster that allantoin, an end product of purine metabolism, is increased during aging in a microbiota-dependent manner. Allantoin levels are low in young flies but are commonly elevated upon lifespan-shortening dietary manipulations such as high-purine, high-sugar, or high-yeast feeding. Removing Acetobacter persici in the Drosophila microbiome attenuated age-dependent allantoin increase. Mono-association with A. persici, but not with Lactobacillus plantarum, increased allantoin in aged flies. A. persici increased allantoin via activation of innate immune signaling IMD pathway in the renal tubules. On the other hand, analysis of bacteria-conditioned diets revealed that L. plantarum can decrease allantoin by reducing purines in the diet. These data together demonstrate species-specific regulations of host purine levels by the gut microbiome.

2.
Cell Rep ; 32(3): 107938, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32698005

ABSTRACT

Necrotic cells elicit an inflammatory response through their endogenous factors with damage-associated molecular patterns. Blocking apoptosis in Drosophila wings leads to the necrosis-driven systemic immune response by unknown mechanisms. Here, we demonstrate that immune activation in response to necrotic cells is mediated by commensal gut microbiota. Removing the microbiome attenuates hyperactivation of the innate immune signaling IMD pathway in necrosis-induced flies. Necrotic cells in wings trigger Gluconobacter expansion in the gut. An isolated Gluconobacter sp. strain is sufficient for pathological IMD activation in necrosis-induced flies, while it is not inflammatory for control animals. In addition, bacterial colonization shifts the host metabolome and shortens the lifespan of necrosis-induced flies. This study shows that local necrosis triggers a pathological systemic inflammatory response through interaction between the host and the dysbiotic gut microbiome.


Subject(s)
Drosophila melanogaster/immunology , Drosophila melanogaster/microbiology , Dysbiosis/immunology , Dysbiosis/pathology , Gastrointestinal Microbiome/immunology , Animals , Colony Count, Microbial , Gluconobacter/growth & development , Necrosis , Signal Transduction , Wings, Animal/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...