Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1375249, 2024.
Article in English | MEDLINE | ID: mdl-38808064

ABSTRACT

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods: The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results: Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion: These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria, Falciparum , Membrane Proteins , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Ghana , Humans , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Female , Adult , Male , Adolescent , Young Adult , Child , Genetic Variation , Child, Preschool , Middle Aged , Sequence Analysis, DNA , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Antigenic Variation , DNA, Protozoan/genetics
2.
Vaccine ; 41(6): 1265-1273, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36642628

ABSTRACT

A malaria vaccine with high efficacy and capable of inducing sterile immunity against malaria within genetically diverse populations is urgently needed to complement ongoing disease control and elimination efforts. Parasite-specific IFN-γ and granzyme B-secreting CD8 + T cells have been identified as key mediators of protection and the rapid identification of malaria antigen targets that elicit these responses will fast-track the development of simpler, cost-effective interventions. This study extends our previous work which used peripheral blood mononuclear cells (PBMCs) from adults with life-long exposure to malaria parasites to identify immunodominant antigen-specific peptide pools composed of overlapping 15mer sequences spanning full length proteins of four malarial antigens. Our current study aimed to identify CD8 + T cell epitopes within these previously identified positive peptide pools. Cryopreserved PBMCs from 109 HLA-typed subjects were stimulated with predicted 9-11mer CD8 + T cell epitopes from P. falciparum circumsporozoite protein (CSP), apical membrane antigen 1 (AMA1), thrombospondin related anonymous protein (TRAP) and cell traversal for ookinetes and sporozoites (CelTOS) in FluoroSpot assays. A total of 135 epitopes out of 297 tested peptides from the four antigens were experimentally identified as positive for IFN-γ and/or granzyme B production in 65 of the 109 subjects. Forty-three of 135 epitopes (32 %) were promiscuous for HLA binding, with 31 of these promiscuous epitopes (72 %) being presented by HLA alleles that fall within at least two different HLA supertypes. Furthermore, about 52 % of identified epitopes were conserved when the respective sequences were aligned with those from 16 highly diverse P. falciparum parasite strains. In summary, we have identified a number of conserved epitopes, immune responses to which could be effective against multiple P. falciparum parasite strains in genetically diverse populations.


Subject(s)
Malaria Vaccines , Malaria , Adult , Humans , Granzymes , Epitopes, T-Lymphocyte , Protozoan Proteins , Plasmodium falciparum , Leukocytes, Mononuclear , Antigens, Protozoan , Peptides , Biomarkers
3.
J Blood Med ; 13: 151-164, 2022.
Article in English | MEDLINE | ID: mdl-35330697

ABSTRACT

Purpose: The severity of Plasmodium falciparum infections is associated with the ability of the infected red blood cells to cytoadhere to host vascular endothelial surfaces and to uninfected RBCs. Host blood group antigens and two serum proteins α2-macroglobulin (α2M) and IgM have been implicated in rosette formation in laboratory-adapted P. falciparum. However, there is only limited information about these phenotypes in clinical isolates. Methods: This was a hospital-based study involving children under 12 years-of-age reporting to the Hohoe Municipal Hospital with different clinical presentations of malaria. Parasite isolates were grown and rosette capabilities and characteristics were investigated by fluorescence microscopy. α2M and IgM were detected by ELISA. Results: Rosette formation was observed in 46.8% (75/160) of the parasite isolates from all the blood groups tested. Rosettes were more prevalent (55%) among isolates from patients with severe malaria compared to isolates from patients with uncomplicated malaria (45%). Rosette prevalence was highest (30%) among patients with blood group O (30%) and B (29%), while the mean rosette frequency was higher in isolates from patients with blood group A (28.7). Rosette formation correlated negatively with age (r = -0.09, P= 0.008). Participants with severe malaria had a lower IgM concentration (3.683±3.553) than those with uncomplicated malaria (5.256±4.294) and the difference was significant (P= 0.0228). The mean concentrations of anti-parasite IgM measured among the clinical isolates which formed rosettes was lower (4.2 ±3.930 mg/mL), than that in the non rosetting clinical isolates (4.604 ±4.159 mg/mL) but the difference was not significant (P=0.2733). There was no significant difference in plasma α2M concentration between rosetting and non rosetting isolates (P=0.442). Conclusion: P. falciparum parasite rosette formation was affected by blood group type and plasma concentration of IgM. A lower IgM concentration was associated with severe malaria whilst a higher α2M concentration was associated with uncomplicated malaria.

4.
Vaccine ; 40(5): 757-764, 2022 01 31.
Article in English | MEDLINE | ID: mdl-34969544

ABSTRACT

Sterile protection against clinical malaria has been achieved in animal models and experimental human challenge studies involving immunization with radiation attenuated Plasmodium falciparum sporozoite vaccines as well as by live sporozoites under chloroquine prophylaxis. Parasite-specific IFN-γ and granzyme B-secreting CD8 + T cells have been identified as key mediators of protection. Although the exact parasite targets of protective CD8 + T cell responses are not fully defined, responses against a handful of vaccine candidate antigens have been associated with protection. Identifying the T cell targets in these antigens will facilitate the development of simpler, cost-effective, and efficacious next generation multi-epitope vaccines. The aim of this study was to identify immunodominant portions of four malaria vaccine candidate antigens using peripheral blood mononuclear cells (PBMCs) from adults with life-long exposure to malaria parasites. Cryopreserved PBMCs from 291 HLA-typed subjects were stimulated with pools of overlapping 15mer peptides spanning the entire sequences of P. falciparum circumsporozoite protein (CSP, 9 pools), apical membrane antigen 1 (AMA1, 12 pools), thrombospondin related anonymous protein (TRAP, 6 pools) and cell traversal for ookinetes and sporozoites (CelTOS, 4 pools) in FluoroSpot assays. 125 of 291 subjects made IFN-γ responses to 30 of the 31 peptide pools tested and 22 of 291 made granzyme B responses, with 20 making dual responses. The most frequent responses were to the CSP C-terminal region and the least frequent responses were to TRAP and CelTOS. There was no association between FluoroSpot responses and active malaria infection, detected by either microscopy, RDT, or PCR. In conclusion, CSP and AMA1 have relatively higher numbers of epitopes that trigger IFN-γ and granzyme B-secreting T cells in adults with life-long malaria parasite exposure compared to the other two antigens tested, and highlights the continued relevance of these two antigens as vaccine candidates.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Antigens, Protozoan , Epitopes, T-Lymphocyte , Ghana , Humans , Leukocytes, Mononuclear , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Protozoan Proteins , Sporozoites
5.
PLoS One ; 16(9): e0257219, 2021.
Article in English | MEDLINE | ID: mdl-34506564

ABSTRACT

Antigen polymorphisms in essential malarial antigens are a key challenge to the design and development of broadly effective malaria vaccines. The effect of polymorphisms on antibody responses is fairly well studied while much fewer studies have assessed this for T cell responses. This study investigated the effect of allelic polymorphisms in the malarial antigen apical membrane antigen 1 (AMA1) on ex vivo T cell-specific IFN-γ responses in subjects with lifelong exposure to malaria. Human leukocyte antigen (HLA) class I-restricted peptides from the 3D7 clone AMA1 were bioinformatically predicted and those with variant amino acid positions used to select corresponding allelic sequences from the 7G8, FVO, FC27 and tm284 parasite strains. A total of 91 AMA1 9-10mer peptides from the five parasite strains were identified, synthesized, grouped into 42 allele sets and used to stimulate PBMCs from seven HLA class 1-typed subjects in IFN-γ ELISpot assays. PBMCs from four of the seven subjects (57%) made positive responses to 18 peptides within 12 allele sets. Fifty percent of the 18 positive peptides were from the 3D7 parasite variant. Amino acid substitutions that were associated with IFN-γ response abrogation were more frequently found at positions 1 and 6 of the tested peptides, but substitutions did not show a clear pattern of association with response abrogation. Thus, while we show some evidence of polymorphisms affecting T cell response induction, other factors including TCR recognition of HLA-peptide complexes may also be at play.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Adult , Alleles , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Female , Humans , Malaria Vaccines/therapeutic use , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Male , Middle Aged , Peptides/metabolism , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Young Adult
7.
Front Microbiol ; 11: 559255, 2020.
Article in English | MEDLINE | ID: mdl-33281757

ABSTRACT

BACKGROUND: Pro- and anti-inflammatory cytokines are important mediators of immunity and are associated with malaria disease outcomes. However, their role in the establishment of asymptomatic infections, which may precede the development of clinical symptoms, is not as well-understood. METHODS: We determined the association of pro and anti-inflammatory cytokines and other immune effector molecules with the development of asymptomatic malaria. We measured and compared the plasma levels of pro-inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin (IL)-6, IL-12p70, IL-17A, and granzyme B, the anti-inflammatory cytokine IL-4 and the regulatory cytokine IL-10 from children with asymptomatic malaria infections (either microscopic or submicroscopic) and uninfected controls using Luminex. RESULTS: We show that individuals with microscopic asymptomatic malaria had significantly increased levels of TNF-α and IL-6 compared to uninfected controls. Children with either microscopic or submicroscopic asymptomatic malaria exhibited higher levels of IFN-γ, IL-17A, and IL-4 compared to uninfected controls. The levels of most of the pro and anti-inflammatory cytokines were comparable between children with microscopic and submicroscopic infections. The ratio of IFN-γ/IL-10, TNF-α/IL-10, IL-6/IL-10 as well as IFN-γ/IL-4 and IL-6/IL-4 did not differ significantly between the groups. Additionally, using a principal component analysis, the cytokines measured could not distinguish amongst the three study populations. This may imply that neither microscopic nor submicroscopic asymptomatic infections were polarized toward a pro-inflammatory or anti-inflammatory response. CONCLUSION: The data show that asymptomatic malaria infections result in increased plasma levels of both pro and anti-inflammatory cytokines relative to uninfected persons. The balance between pro- and anti-inflammatory cytokines are, however, largely maintained and this may in part, explain the lack of clinical symptoms. This is consistent with the generally accepted observation that clinical symptoms develop as a result of immunopathology involving dysregulation of inflammatory mediator balance in favor of pro-inflammatory mediators.

8.
Malar J ; 19(1): 64, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32041620

ABSTRACT

BACKGROUND: Asymptomatic carriage of Plasmodium falciparum is widespread in adults and children living in malaria-endemic countries. This study identified the prevalence of malaria parasites and the corresponding levels of naturally acquired anti-parasite antibody levels in afebrile adults living in two communities in the Greater Accra Region of Ghana. METHODS: Two cross-sectional studies conducted in January and February 2016 and repeated in July and August 2016 recruited subjects aged between 6 and 75 years from high parasite prevalence (Obom) and low parasite prevalence (Asutsuare) communities. Whole blood (5 ml) was collected from each volunteer, plasma was aliquoted and frozen until needed. An aliquot (10 µl) of the blood was used to prepare thick and thin blood smears, 100 µl was preserved in Trizol and the rest was separated into plasma and blood cells and each stored at - 20 °C until needed. Anti-MSP3 and Pfs230 antibody levels were measured using ELISA. RESULTS: Asexual parasite and gametocyte prevalence were higher in Obom than Asutsuare. Antibody (IgG, IgG1, IgG3, IgM) responses against the asexual parasite antigen MSP3 and gametocyte antigen Pfs230 were higher in Obom during the course of the study except for IgM responses against Pfs230, which was higher in Asutsuare than in Obom during the rainy season. Antibody responses in Asutsuare were more significantly associated with age than the responses measured in Obom. CONCLUSION: The pattern of antibody responses measured in people living in the high and low malaria transmission setting was similar. All antibody responses measured against the asexual antigen MSP3 increased, however, IgG and IgG1 responses against gametocyte antigen Pfs230 decreased in moving from the dry to the peak season in both sites. Whilst asexual and gametocyte prevalence was similar between the seasons in the low transmission setting, in the high transmission setting asexual parasite prevalence increased but gametocyte prevalence decreased in the rainy season relative to the dry season.


Subject(s)
Carrier State/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum/immunology , Adolescent , Adult , Age Factors , Aged , Antibodies, Protozoan/blood , Asymptomatic Infections/epidemiology , Carrier State/immunology , Carrier State/parasitology , Child , Enzyme-Linked Immunosorbent Assay , Ghana/epidemiology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Linear Models , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Middle Aged , Plasmodium falciparum/growth & development , Prevalence , RNA, Protozoan/blood , Rain , Real-Time Polymerase Chain Reaction , Seasons , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...