Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(6): 1851-1865, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38787439

ABSTRACT

Saccharomyces boulardii (Sb) is an emerging probiotic chassis for delivering biomolecules to the mammalian gut, offering unique advantages as the only eukaryotic probiotic. However, precise control over gene expression and gut residence time in Sb have remained challenging. To address this, we developed five ligand-responsive gene expression systems and repaired galactose metabolism in Sb, enabling inducible gene expression in this strain. Engineering these systems allowed us to construct AND logic gates, control the surface display of proteins, and turn on protein production in the mouse gut in response to dietary sugar. Additionally, repairing galactose metabolism expanded Sb's habitat within the intestines and resulted in galactose-responsive control over gut residence time. This work opens new avenues for precise dosing of therapeutics by Sb via control over its in vivo gene expression levels and localization within the gastrointestinal tract.


Subject(s)
Galactose , Probiotics , Saccharomyces boulardii , Animals , Mice , Galactose/metabolism , Saccharomyces boulardii/genetics , Saccharomyces boulardii/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Diet
2.
Adv Nutr ; 14(2): 238-255, 2023 03.
Article in English | MEDLINE | ID: mdl-36775788

ABSTRACT

Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.


Subject(s)
Carotenoids , Gastrointestinal Microbiome , Humans , Carotenoids/pharmacology , Carotenoids/metabolism , Colon/metabolism , Prebiotics , Dietary Supplements
3.
Bio Protoc ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36353713

ABSTRACT

Directed evolution is a powerful technique for identifying beneficial mutations in defined DNA sequences with the goal of improving desired phenotypes. Recent methodological advances have made the evolution of short DNA sequences quick and easy. However, the evolution of DNA sequences >5kb in length, notably gene clusters, is still a challenge for most existing methods. Since many important microbial phenotypes are encoded by multigene pathways, they are usually improved via adaptive laboratory evolution (ALE), which while straightforward to implement can suffer from off-target and hitchhiker mutations that can adversely affect the fitness of the evolved strain. We have therefore developed a new directed evolution method (Inducible Directed Evolution, IDE) that combines the specificity and throughput of recent continuous directed evolution methods with the ease of ALE. Here, we present detailed methods for operating Inducible Directed Evolution (IDE), which enables long (up to 85kb) DNA sequences to be mutated in a high throughput manner via a simple series of incubation steps. In IDE, an intracellular mutagenesis plasmid (MP) tunably mutagenizes the pathway of interest, located on the phagemid (PM). MP contains a mutagenic operon ( danQ926, dam, seqA, emrR, ugi , and cda1 ) that can be expressed via the addition of a chemical inducer. Expression of the mutagenic operon during a cell cycle represses DNA repair mechanisms such as proofreading, translesion synthesis, mismatch repair, and base excision and selection, which leads to a higher mutation rate. Induction of the P1 lytic cycle results in packaging of the mutagenized phagemid, and the pathway-bearing phage particles infect naïve cells, generating a mutant library that can be screened or selected for improved variants. Successive rounds of IDE enable optimization of complex phenotypes encoded by large pathways (as of this writing up to 36 kb), without requiring inefficient transformation steps. Additionally, IDE avoids off-target genomic mutations and enables decoupling of mutagenesis and screening steps, establishing it as a powerful tool for optimizing complex phenotypes in E. coli .

4.
Nucleic Acids Res ; 50(10): e58, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35150576

ABSTRACT

Directed evolution is a powerful method for engineering biology in the absence of detailed sequence-function relationships. To enable directed evolution of complex phenotypes encoded by multigene pathways, we require large library sizes for DNA sequences >5-10 kb in length, elimination of genomic hitchhiker mutations, and decoupling of diversification and screening steps. To meet these challenges, we developed Inducible Directed Evolution (IDE), which uses a temperate bacteriophage to package large plasmids and transfer them to naive cells after intracellular mutagenesis. To demonstrate IDE, we evolved a 5-gene pathway from Bacillus licheniformis that accelerates tagatose catabolism in Escherichia coli, resulting in clones with 65% shorter lag times during growth on tagatose after only two rounds of evolution. Next, we evolved a 15.4 kb, 10-gene pathway from Bifidobacterium breve UC2003 that aids E. coli's utilization of melezitose. After three rounds of IDE, we isolated evolved pathways that both reduced lag time by more than 2-fold and enabled 150% higher final optical density. Taken together, this work enhances the capacity and utility of a whole pathway directed evolution approach in E. coli.


Subject(s)
Bacteria/genetics , Directed Molecular Evolution , Bacteria/metabolism , Bacteria/virology , Bacteriophages/genetics , Directed Molecular Evolution/methods , Mutagenesis , Phenotype , Plasmids/genetics
5.
Cell Host Microbe ; 29(6): 854-855, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34111392

ABSTRACT

The infant gut microbiota is shaped by diverse environmental exposures that alter its composition and can enrich antimicrobial resistance genes (ARGs). In this issue of Cell Host & Microbe, Li et al. (2021) studied the causes, spread, and dynamics of ARGs and their relationship with asthma-associated microbiota in Danish children.


Subject(s)
Asthma , Gastrointestinal Microbiome , Anti-Bacterial Agents/pharmacology , Child , Environmental Exposure , Escherichia coli , Humans , Infant , Life Style , Siblings
6.
ACS Synth Biol ; 10(5): 1039-1052, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33843197

ABSTRACT

Saccharomyces boulardii is a probiotic yeast that exhibits rapid growth at 37 °C, is easy to transform, and can produce therapeutic proteins in the gut. To establish its ability to produce small molecules encoded by multigene pathways, we measured the amount and variance in protein expression enabled by promoters, terminators, selective markers, and copy number control elements. We next demonstrated efficient (>95%) CRISPR-mediated genome editing in this strain, allowing us to probe engineered gene expression across different genomic sites. We leveraged these strategies to assemble pathways enabling a wide range of vitamin precursor (ß-carotene) and drug (violacein) titers. We found that S. boulardii colonizes germ-free mice stably for over 30 days and competes for niche space with commensal microbes, exhibiting short (1-2 day) gut residence times in conventional and antibiotic-treated mice. Using these tools, we enabled ß-carotene synthesis (194 µg total) in the germ-free mouse gut over 14 days, estimating that the total mass of additional ß-carotene recovered in feces was 56-fold higher than the ß-carotene present in the initial probiotic dose. This work quantifies heterologous small molecule production titers by S. boulardii living in the mammalian gut and provides a set of tools for modulating these titers.


Subject(s)
Antineoplastic Agents/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Indoles/metabolism , Metabolic Engineering/methods , Probiotics/metabolism , Provitamins/biosynthesis , Saccharomyces boulardii/metabolism , beta Carotene/biosynthesis , Animals , CRISPR-Cas Systems , Feces/chemistry , Female , Gastrointestinal Microbiome , Gene Editing/methods , Gene Expression , Male , Mice , Mice, Inbred C57BL , Microorganisms, Genetically-Modified , Multigene Family , Plasmids/genetics , Promoter Regions, Genetic , Saccharomyces boulardii/genetics , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...