Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 10(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36016206

ABSTRACT

Background: Limited commercial LFA assays are available to provide a reliable quantitative measurement of the total binding antibody units (BAU/mL) against the receptor-binding domain of the SARS-CoV-2 spike protein (S-RBD). Aim: This study aimed to evaluate the performance of the fluorescence LFA FinecareTM 2019-nCoV S-RBD test along with its reader (Model No.: FS-113) against the following reference methods: (i) the FDA-approved GenScript surrogate virus-neutralizing assay (sVNT); and (ii) three highly performing automated immunoassays: BioMérieux VIDAS®3, Ortho VITROS®, and Mindray CL-900i®. Methods: Plasma from 488 vaccinees was tested by all aforementioned assays. Fingerstick whole-blood samples from 156 vaccinees were also tested by FinecareTM. Results and conclusions: FinecareTM showed 100% specificity, as none of the pre-pandemic samples tested positive. Equivalent FinecareTM results were observed among the samples taken from fingerstick or plasma (Pearson correlation r = 0.9, p < 0.0001), suggesting that fingerstick samples are sufficient to quantitate the S-RBD BAU/mL. A moderate correlation was observed between FinecareTM and sVNT (r = 0.5, p < 0.0001), indicating that FinecareTM can be used for rapid prediction of the neutralizing antibody (nAb) post-vaccination. FinecareTM BAU results showed strong correlation with VIDAS®3 (r = 0.6, p < 0.0001) and moderate correlation with VITROS® (r = 0.5, p < 0.0001) and CL-900i® (r = 0.4, p < 0.0001), suggesting that FinecareTM can be used as a surrogate for the advanced automated assays to measure S-RBD BAU/mL.

2.
Diabetes Res Clin Pract ; 151: 198-208, 2019 May.
Article in English | MEDLINE | ID: mdl-30954515

ABSTRACT

AIMS: T2DM reach epidemic levels in the Arab countries. In this study, we aimed to perform a systematic review and meta-analysis to underline the susceptibility genetic profile of Arab patients with T2DM that result from SNPs. METHODS: We searched four literature databases (PubMed, Scopus, Science Direct and Web of Science) through January 2019. We included all SNPs in candidate genes with an OR > 1 that were associated with T2DM among Arab patients with T2DM. Statistical programs such as software Review Manager (Version 5.02) and STATA (Version 15.1) were used. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with a random effects model or a fixed effect model depending on the heterogeneity among studies. I2 statistics and Egger's tests were performed to assess heterogeneity and publication bias. RESULTS: Out of 2245 studies, 47 were used for meta-analysis. We captured 31,307 cases and 26,464 controls in which we collected 71 SNPs in 32 genes. A pooled meta-analysis demonstrated 24-69% increase in T2DM risk. Among the 57 SNPs (in 32 genes) that were not included in the meta-analysis, the OR for diabetes ranged from 1.02 to 5.10, with a median of 1.38 (interquartile range 1.33-2.09). Ten studies examined the association between the TCF7L2 polymorphism rs7903146 and T2DM, leading to an aggregated OR of 1.34 (95%CI 1.27-1.41). CONCLUSION: The genetic profile that confer susceptibility to T2DM in Arab patients is diverse. This study may serve as a platform for designing a gene panel for testing the susceptibility to T2DM.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic/genetics , Arab World , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...