Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Aspects Med ; 94: 101219, 2023 12.
Article in English | MEDLINE | ID: mdl-37839232

ABSTRACT

Glaucoma is a neurodegenerative eye disease that causes permanent vision impairment. The main pathological characteristics of glaucoma are retinal ganglion cell (RGC) loss and optic nerve degeneration. Glaucoma can be caused by elevated intraocular pressure (IOP), although some cases are congenital or occur in patients with normal IOP. Current glaucoma treatments rely on medicine and surgery to lower IOP, which only delays disease progression. First-line glaucoma medicines are supported by pharmacotherapy advancements such as Rho kinase inhibitors and innovative drug delivery systems. Glaucoma surgery has shifted to safer minimally invasive (or microinvasive) glaucoma surgery, but further trials are needed to validate long-term efficacy. Further, growing evidence shows that adeno-associated virus gene transduction and stem cell-based RGC replacement therapy hold potential to treat optic nerve fiber degeneration and glaucoma. However, better understanding of the regulatory mechanisms of RGC development is needed to provide insight into RGC differentiation from stem cells and help choose target genes for viral therapy. In this review, we overview current progress in RGC development research, optic nerve fiber regeneration, and human stem cell-derived RGC differentiation and transplantation. We also provide an outlook on perspectives and challenges in the field.


Subject(s)
Glaucoma , Neurodegenerative Diseases , Optic Nerve Diseases , Humans , Animals , Glaucoma/drug therapy , Glaucoma/pathology , Retinal Ganglion Cells/pathology , Optic Nerve Diseases/therapy , Optic Nerve Diseases/pathology , Disease Progression , Neurodegenerative Diseases/pathology , Disease Models, Animal
2.
Neuron ; 104(3): 512-528.e11, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31493975

ABSTRACT

More than 8,000 genes are turned on or off as progenitor cells produce the 7 classes of retinal cell types during development. Thousands of enhancers are also active in the developing retinae, many having features of cell- and developmental stage-specific activity. We studied dynamic changes in the 3D chromatin landscape important for precisely orchestrated changes in gene expression during retinal development by ultra-deep in situ Hi-C analysis on murine retinae. We identified developmental-stage-specific changes in chromatin compartments and enhancer-promoter interactions. We developed a machine learning-based algorithm to map euchromatin and heterochromatin domains genome-wide and overlaid it with chromatin compartments identified by Hi-C. Single-cell ATAC-seq and RNA-seq were integrated with our Hi-C and previous ChIP-seq data to identify cell- and developmental-stage-specific super-enhancers (SEs). We identified a bipolar neuron-specific core regulatory circuit SE upstream of Vsx2, whose deletion in mice led to the loss of bipolar neurons.


Subject(s)
Euchromatin/metabolism , Gene Expression Regulation, Developmental/physiology , Heterochromatin/metabolism , Retina/embryology , Retinal Bipolar Cells/metabolism , Animals , Chromatin/metabolism , Chromatin Immunoprecipitation Sequencing , Enhancer Elements, Genetic , Gene Regulatory Networks , Homeodomain Proteins/genetics , Machine Learning , Mice , Nuclear Lamina/metabolism , Promoter Regions, Genetic , RNA-Seq , Receptors, Cytoplasmic and Nuclear/genetics , Retina/cytology , Retina/metabolism , Retina/ultrastructure , Retinal Bipolar Cells/cytology , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/metabolism , Single-Cell Analysis , Transcription Factors/genetics , Lamin B Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...