Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 67: 101660, 2023 01.
Article in English | MEDLINE | ID: mdl-36535626

ABSTRACT

OBJECTIVES: The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates growth and metabolism. In mice, activation of mTOR controls cold adaptation by promoting the recruitment and the activation of brown adipose tissue (BAT). DEP-domain containing mTOR-interacting protein (DEPTOR) interacts with mTOR to modulate its activity. Whether DEPTOR levels are modulated by cold in BAT and whether this protein regulates brown adipocyte development and thermogenic activation has never been tested. METHODS: DEPTOR levels were measured in mouse tissues upon cold exposure and in brown preadipocytes following the induction of adipogenesis. Lentiviruses expressing short-hairpin RNA were used to repress DEPTOR expression in brown preadipocytes in vitro. Conditional deletion of DEPTOR in brown preadipocytes and in mature brown fat cells was achieved by crossing DEPTOR floxed mice with either Myf5-Cre or Ucp1-CreERT2 mice. These animals were exposed to cold and extensively phenotyped. RESULTS: DEPTOR is highly expressed in BAT and its levels are induced by chronic cold exposure, a condition that triggers BAT expansion and activation. Supporting a role for DEPTOR in brown fat cell recruitment, we found that DEPTOR is induced during brown adipocyte development and that its depletion impairs adipogenesis in vitro. This adipogenic lesion was associated with defects in both Akt activation and the expression of key adipogenic regulators. Conditional deletion of DEPTOR in brown preadipocytes or mature brown fat cells did not impact BAT recruitment and thermogenesis in mice but slightly reduced the expression of adipogenic and lipogenic genes. CONCLUSIONS: DEPTOR is highly expressed in BAT and its levels are dynamically regulated during brown fat cell development and upon cold exposure. Although DEPTOR depletion severely represses brown fat adipogenesis in vitro, its deletion is dispensable for BAT development, recruitment, and thermogenic activation in mice.


Subject(s)
Adipocytes, Brown , Adipose Tissue, Brown , Animals , Mice , Adipocytes, Brown/metabolism , Adipogenesis/genetics , Adipose Tissue, Brown/metabolism , Cell Differentiation/genetics , TOR Serine-Threonine Kinases/metabolism
2.
Am J Physiol Endocrinol Metab ; 320(2): E259-E269, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33196296

ABSTRACT

White adipose tissue (WAT) is a dynamic organ that plays crucial roles in controlling metabolic homeostasis. During development and periods of energy excess, adipose progenitors are recruited and differentiate into adipocytes to promote lipid storage capability. The identity of adipose progenitors and the signals that promote their recruitment are still incompletely characterized. We have recently identified V-set and transmembrane domain-containing protein 2A (VSTM2A) as a novel protein enriched in preadipocytes that amplifies adipogenic commitment. Despite the emerging role of VSTM2A in promoting adipogenesis, the molecular mechanisms regulating Vstm2a expression in preadipocytes are still unknown. To define the molecular mechanisms controlling Vstm2a expression, we have treated preadipocytes with an array of compounds capable of modulating established regulators of adipogenesis. Here, we report that Vstm2a expression is positively regulated by PI3K/mTOR and cAMP-dependent signaling pathways and repressed by the MAPK pathway and the glucocorticoid receptor. By integrating the impact of all the molecules tested, we identified signal transducer and activator of transcription 3 (STAT3) as a novel downstream transcription factor affecting Vstm2a expression. We show that activation of STAT3 increased Vstm2a expression, whereas its inhibition repressed this process. In mice, we found that STAT3 phosphorylation is elevated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression. Our findings identify STAT3 as a key transcription factor regulating Vstm2a expression in preadipocytes.NEW & NOTEWORTHY cAMP-dependent and PI3K-mTOR signaling pathways promote the expression of Vstm2a. STAT3 is a key transcription factor that controls Vstm2a expression in preadipocytes. STAT3 is activated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression.


Subject(s)
Adipocytes/physiology , Adipogenesis/genetics , Membrane Proteins/physiology , STAT3 Transcription Factor/physiology , 3T3-L1 Cells , Adipose Tissue, White/metabolism , Animals , Cell Differentiation/genetics , Gene Expression Regulation , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , STAT3 Transcription Factor/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...