Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pancreas ; 50(8): 1187-1194, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34714283

ABSTRACT

OBJECTIVES: Pancreatic cancer is one of the most aggressive solid cancers and the fourth leading cause of cancer death in men and women. We previously showed that arginine depletion, using arginase I [HuArgI(Co)-PEG5000], selectively triggers cell death by autophagy in PANC-1 pancreatic cancer cells. The mechanism of action of [HuArgI(Co)-PEG5000], however, has remained poorly understood. In this study, we investigated the effects of arginine depletion on PANC-1 cell migration, adhesion, and invasion and determined the main molecular targets, which mediate PANC-1 cell response to treatment with HuArgI(Co)-PEG5000. METHODS: This was done through examining 2-dimensional (2D) cell motility assays (wound healing and time lapse), cell adhesion, and cell invasion assays, as well as immunostaining for focal adhesions and invadopodia in cells without or with the treatment with arginase. RESULTS: We demonstrate that arginine depletion decreases PANC-1 2D cell migration, adhesion, and 3D invasion. Moreover, our data suggest that these effects are mediated by autophagy and subsequent decrease in the activation of members of Ras homolog gene family (Rho) GTPase family. CONCLUSIONS: Altogether, these findings uncover the mechanism of action of [HuArgI(Co)-PEG5000] and highlight the promising and selective anticancer potential for arginine depletion in the treatment of pancreatic cancer cells.


Subject(s)
Arginase/pharmacology , Autophagy/drug effects , Cell Movement/drug effects , Pancreatic Neoplasms/metabolism , Arginine/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Polyethylene Glycols/pharmacology , Recombinant Proteins/pharmacology
2.
Cells Dev ; 165: 203656, 2021 03.
Article in English | MEDLINE | ID: mdl-34024335

ABSTRACT

Cleft lip and/or palate are a split in the lip, the palate or both. This results from the inability of lip buds and palatal shelves to properly migrate and assemble during embryogenesis. By extracting primary cells from a cleft patient, we aimed at offering a better understanding of the signaling mechanisms and interacting molecules involved in the lip and palate formation and fusion. With Rho GTPases being indirectly associated with cleft occurrence, we investigated the role of the latter in both. First, whole exome sequencing was conducted in a patient with cleft lip and palate. Primary fibroblastic cells originating from the upper right gingiva region were extracted and distinct cellular populations from two individuals were obtained: a control with no cleft phenotype and a patient with a cleft lip and palate. The genetic data showed three candidate variables in ARHGEF18, EPDR1, and CUL7. Next, the molecular data showed no significant change in proliferation rates between healthy patient cells and CL/P patient cells. However, CL/P patient cells showed decreased migration, increased adhesion and presented with a more elongated phenotype. Additionally, RhoA activity was upregulated in these cells, whereas Cdc42 activity was downregulated, resulting in loss of polarity. Our results are suggestive of a possible correlation between a dysregulation of Rho GTPases and the observed phenotype of cleft lip and palate patient cells. This insight into the intramolecular aspect of this disorder helps link the genetic defect with the observed phenotype and offers a possible mechanism by which CL/P occurs.


Subject(s)
Cell Movement , Cleft Lip/enzymology , Cleft Lip/pathology , Cleft Palate/enzymology , Cleft Palate/pathology , rho GTP-Binding Proteins/metabolism , Adolescent , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Polarity/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cleft Lip/genetics , Cleft Palate/genetics , Collagen/pharmacology , Female , Humans , Phenotype , Exome Sequencing , cdc42 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
3.
Cells Dev ; 166: 203674, 2021 06.
Article in English | MEDLINE | ID: mdl-33994351

ABSTRACT

Orofacial clefts are the most common congenital craniofacial birth defects. They occur from a failure in cell proliferation and fusion of neural crest cells of the lip buds and/or palatal shelves. In this study, we investigate the genetic basis and molecular mechanisms in primary cells derived from a cleft and lip palate patient presenting van der Woude syndrome (VWS). Since mutations in the integrin genes are widely correlated with VWS, Interferon Regulatory Factor 6 (IRF6) screening was conducted in a cohort of 200 participants presenting with orofacial anomalies. Primary fibroblastic cells derived from the upper right gingiva and palatal regions were isolated and two cellular populations from two participants were obtained: a control with no cleft phenotype and a patient with a cleft phenotype typical of van der Woude syndrome (VWS). IRF6 targeted sequencing revealed mutations in two distinct families. Our results showed no alteration in the viability of the CLP/VWS patient cells, suggesting the phenotype associate with the disease is not secondary to a defect in cell proliferation. We did however detect a significant decrease in the migratory ability of the CLP with Van der Woude syndrome (CLP/VWS) patient cells, which could account for the phenotype. When compared to normal cells, patient cells showed a lack of polarization, which would account for their lack of mobility. Patient cells showed protrusions all around the cells and a lack of defined leading edge. This was reflected with actin staining, WAVE2 and Arp2 around the cell, and correlated with an increase in Rac1 activation. Consistently with the increase in Rac1 activation, patient cells showed a loss in the maturation of focal adhesions needed for contractility, which also accounts for the lack in cell migration. Our findings give increased understanding of the molecular mechanisms of VWS and expands the knowledge of van der Woude syndrome (VWS) occurrence by providing a strong molecular evidence that CLP with Van der Woude syndrome (CLP/VWS) phenotype is caused by a defect in normal physiological processes of cells.


Subject(s)
Cell Movement , Cleft Lip/genetics , Cleft Lip/pathology , Cleft Palate/genetics , Cleft Palate/pathology , Interferon Regulatory Factors/genetics , Mutation/genetics , rho GTP-Binding Proteins/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Actin-Related Protein 2/metabolism , Case-Control Studies , Cell Adhesion , Cell Proliferation , Cell Survival , Cells, Cultured , Collagen/metabolism , Cysts/genetics , Cysts/pathology , Female , Genetic Predisposition to Disease , Humans , Interferon Regulatory Factors/metabolism , Lip/abnormalities , Lip/pathology , Male , Models, Biological , Pedigree , Phenotype , Wiskott-Aldrich Syndrome Protein Family/metabolism
4.
Oncol Lett ; 21(2): 163, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33552281

ABSTRACT

Breast cancer is the leading cause of cancer-associated death among women worldwide. Targeting breast cancer cell metastasis is an important therapeutic approach. The MAPK pathway is a key cell signaling pathway that plays a pivotal role in cellular invasion and migration. Numerous studies have identified the MAPK pathway as a way to target cell survival and motility. The present study treated MBA-MD-231 breast cancer cells with anthrax lethal toxin (LeTx), a potent MAPK inhibitor that selectively cleaves and inactivates all MEKs, as a potential therapeutic method to inhibit breast cancer cell migration. LeTx has been demonstrated to affect breast cancer cell migration. Cells treated with LeTx showed a significant decrease in motility, as observed using wound healing and random 2D motility assays. Additionally, cells treated with LeTx showed an increase in adhesion, which would explain the decrease in migration. Pull-down assays examining the activation status of the members of the Rho family of GTPases revealed an increase in RhoA activation accompanied by a decrease in Cdc42 activation following LeTx treatment. Finally, LeTx mediated a decrease in invasion using a Boyden chamber assay, which could be a result of the decrease in Cdc42 activation. The present study reported the effect of LeTx treatment on the migration, adhesion and invasion of breast cancer cells, demonstrating that this effect was associated with the dysregulation of the Rho GTPases, RhoA and Cdc42.

5.
Cell Commun Signal ; 18(1): 144, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32900380

ABSTRACT

BACKGROUND: Lung cancer is the second most commonly occurring cancer. The ability to metastasize and spread to distant locations renders the tumor more aggressive. Members of the Rho subfamily of small GTP-binding proteins (GTPases) play a central role in the regulation of the actin cytoskeleton and in cancer cell migration and metastasis. In this study we investigated the role of the RhoA/Cdc42 GAP, StarD13, a previously described tumor suppressor, in malignancy, migration and invasion of the lung cancer cells A549. METHODS: We knocked down StarD13 expression in A549 lung cancer cells and tested the effect on cell migration and invadopodia formation using time lapse imaging and invasion assays. We also performed rescue experiments to determine the signaling pathways downstream of StarD13 and transfected the cells with FRET biosensors for RhoGTPases to identify the proteins involved in invadopodia formation. RESULTS: We observed a decrease in the level of expression of StarD13 in lung tumor tissues compared to normal lung tissues through immunohistochemistry. StarD13 also showed a lower expression in the lung adenocarcinoma cell line A549 compared to normal lung cells, WI38. In addition, the depletion of StarD13 increased cell proliferation and viability in WI38 and A549 cells, suggesting that StarD13 might potentially be a tumor suppressor in lung cancer. The depletion of StarD13, however, inhibited cell motility, conversely demonstrating a positive regulatory role in cell migration. This was potentially due to the constitutive activation of RhoA detected by pull down and FRET assays. Surprisingly, StarD13 suppressed cell invasion by inhibiting Cdc42-mediated invadopodia formation. Indeed, TKS4 staining and invadopodia assay revealed that StarD13 depletion increased Cdc42 activation as well as invadopodia formation and matrix degradation. Normal lung cells depleted of StarD13 also produced invadopodia, otherwise a unique hallmark of invasive cancer cells. Cdc42 knock down mimicked the effects of StarD13, while overexpression of a constitutively active Cdc42 mimicked the effects of its depletion. Finally, immunostaining and FRET analysis revealed the absence of StarD13 in invadopodia as compared to Cdc42, which was activated in invadopodia at the sites of matrix degradation. CONCLUSION: In conclusion, StarD13 plays distinct roles in lung cancer cell migration and invasion through its differential regulation of Rho GTPases. Video abstract.


Subject(s)
Adenocarcinoma of Lung/metabolism , GTPase-Activating Proteins/metabolism , Lung Neoplasms/metabolism , Podosomes/metabolism , Tumor Suppressor Proteins/metabolism , rho GTP-Binding Proteins/metabolism , A549 Cells , Adenocarcinoma of Lung/pathology , Cell Movement , Humans , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Podosomes/pathology
6.
Int J Mol Sci ; 20(23)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795337

ABSTRACT

PURPOSE: Colorectal cancer (CRC) is the third most common type of cancer worldwide, and it represents over half of all gastrointestinal cancer deaths. Knowing that cancer cells have a high proliferation rate, they require high amounts of amino acids, including arginine. In addition, several tumor types have been shown to downregulate ASS-1 expression, becoming auxotrophic for arginine. Therefore, Arginine deprivation is one of the promising therapeutic approaches to target cancer cells. This can be achieved through the use of a recombinant human arginase, HuArgI(Co)-PEG5000, an arginine degrading enzyme. METHODS: In this present study, the cytotoxic effect of HuArgI(Co)-PEG5000 on CRC cell lines (HT-29, Caco-2, Sw837) is examined though cytotoxicity assays. Wound healing assays, invasion assays, and adhesion assays were also performed to detect the effect on metastasis. RESULTS: Wound healing and invasion assays revealed a decrease in cell migration and invasion after treatment with arginase. Cells that were treated with arginase also showed a decrease in adhesion, which coincided with a decrease in RhoA activation, demonstrated though the use of a FRET biosensor to detect RhoA activation in a single cell assay, and a decrease in MMP-9 expression. Treating cells with both arginase and L-citrulline, which significantly restores intracellular arginine levels, reversed the effect of HuArgI(Co)-PEG5000 on cell viability, migration, and invasion. CONCLUSION: We can, therefore, conclude that colorectal cancer is partially auxotrophic to arginine and that arginine depletion is a potential selective inhibitory approach for motility and invasion in colon cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Arginase/pharmacology , Arginine/metabolism , Colorectal Neoplasms/drug therapy , Neoplasm Invasiveness/prevention & control , Polyethylene Glycols/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Neoplasm Invasiveness/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...