Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 31(22): 4923-4934.e5, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34610275

ABSTRACT

In most tetrapod vertebrates, limb skeletal progenitors condense with postaxial dominance. Posterior elements (such as ulna and fibula) appear prior to their anterior counterparts (radius and tibia), followed by digit-appearance order with continuing postaxial polarity. The only exceptions are urodele amphibians (salamanders), whose limb elements develop with preaxial polarity and who are also notable for their unique ability to regenerate complete limbs as adults. The mechanistic basis for this preaxial dominance has remained an enigma and has even been proposed to relate to the acquisition of novel genes involved in regeneration. However, recent fossil evidence suggests that preaxial polarity represents an ancestral rather than derived state. Here, we report that 5'Hoxd (Hoxd11-d13) gene deletion in mouse is atavistic and uncovers an underlying preaxial polarity in mammalian limb formation. We demonstrate this shift from postaxial to preaxial dominance in mouse results from excess Gli3 repressor (Gli3R) activity due to the loss of 5'Hoxd-Gli3 antagonism and is associated with cell-cycle changes promoting precocious cell-cycle exit in the anterior limb bud. We further show that Gli3 knockdown in axolotl results in a shift to postaxial dominant limb skeleton formation, as well as expanded paddle-shaped limb-bud morphology and ensuing polydactyly. Evolutionary changes in Gli3R activity level, which also played a key role in the fin-to-limb transition, appear to be fundamental to the shift from preaxial to postaxial polarity in formation of the tetrapod limb skeleton.


Subject(s)
Extremities , Limb Buds , Animals , Biological Evolution , Extremities/anatomy & histology , Mammals , Mice , Transcription Factors/genetics , Urodela/anatomy & histology
2.
Dev Dyn ; 248(2): 189-196, 2019 02.
Article in English | MEDLINE | ID: mdl-30569660

ABSTRACT

BACKGROUND: Among vertebrates, salamanders are unparalleled in their ability to regenerate appendages throughput life. However, little is known about early signals that initiate regeneration in salamanders. RESULTS: Ambystoma mexicanum embryos were administered tail amputations to investigate the timing of reactive oxygen species (ROS) production and the requirement of ROS for regeneration. ROS detected by dihydroethidium increased within minutes of axolotl tail amputation and levels remained high for 24 hr. Pharmacological inhibition of ROS producing enzymes with diphenyleneiodonium chloride (DPI) and VAS2870 reduced ROS levels. Furthermore, DPI treatment reduced cellular proliferation and inhibited tail outgrowth. CONCLUSIONS: The results show that ROS levels increase in response to injury and are required for tail regeneration. These findings suggest that ROS provide instructive, if not initiating cues, for salamander tail regeneration. Developmental Dynamics 248:189-196, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Ambystoma mexicanum/physiology , Amputation, Surgical , Reactive Oxygen Species/metabolism , Regeneration , Ambystoma mexicanum/embryology , Animals , Cell Proliferation/drug effects , Reactive Oxygen Species/analysis , Reactive Oxygen Species/pharmacology , Regeneration/drug effects , Signal Transduction , Tail/growth & development , Tail/physiology , Urodela
SELECTION OF CITATIONS
SEARCH DETAIL
...