Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Vet Sci ; 11(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38535857

ABSTRACT

The recent emergence of anaplasmosis in camels has raised global interest in the pathogenicity and zoonotic potential of the pathogen causing it and the role of camels as reservoir hosts. In the United Arab Emirates (UAE), molecular studies and genetic characterization of camel-associated Anaplasma species are limited. This study aimed to characterize molecularly Anaplasmataceae strains circulating in dromedary camels in the UAE. Two hundred eighty-seven whole-blood samples collected from dromedary camels across regions of the Abu Dhabi Emirate were received between 2019 and 2023 at the Abu Dhabi Agriculture and Food Safety Authority (ADAFSA) veterinary laboratories for routine diagnosis of anaplasmosis. The animals were sampled based on field clinical observation by veterinarians and their tentative suspicion of blood parasite infection on the basis of similar clinical symptoms as those caused by blood parasites in ruminants. The samples were screened for Anaplasmataceae by PCR assay targeting the groEL gene. Anaplasmataceae strains were further characterized by sequencing and phylogenetic analysis of the groEL gene. Thirty-five samples (35/287 = 12.2%) tested positive for Anaplasmataceae spp. by PCR assay. Nine positive samples (9/35 = 25.7%) were sequenced using groEL gene primers. GenBank BLAST analysis revealed that all strains were 100% identical to the Candidatus A. camelii reference sequence available in the GenBank nucleotide database. Phylogenetic analysis further indicated that the sequences were close to each other and were located in one cluster with Candidatus A. camelii sequences detected in Saudi Arabia, Morocco, and the UAE. Pairwise alignment showed that the UAE sequences detected in this study were completely identical and shared 100% identity with Candidatus A. camelii from Morocco and Saudi Arabia and 99.5% identity with Candidatus A. camelii from the UAE. This study demonstrates the presence of Candidatus A. camelii in UAE dromedary camels. Further critical investigation of the clinical and economical significance of this pathogen in camels needs to be carried out.

2.
Front Vet Sci ; 10: 1182165, 2023.
Article in English | MEDLINE | ID: mdl-37720473

ABSTRACT

Background: The study of coronaviruses has grown significantly in recent years.Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in various cell types, and quick development has been made of assays for its growth and quantification. However, only a few viral isolates are now available for investigation with full characterization. The current study aimed to isolate MERS-CoV from nasal swabs of dromedary camels and molecularly analyze the virus in order to detect strain-specific mutations and ascertain lineage classification. Methods: We isolated the virus in Vero cells and adapted it for in vitro cultivation. The isolates were subjected to complete genome sequencing using next-generation sequencing followed by phylogenetic, mutation, and recombination analysis of the sequences. Results: A total of five viral isolates were obtained in Vero cells and adapted to in vitro cultures. Phylogenetic analysis classified all the isolates within clade B3. Four isolates clustered close to the MERS-CoV isolate camel/KFU-HKU-I/2017 (GenBank ID: MN758606.1) with nucleotide identity 99.90-99.91%. The later isolate clustered close to the MERS-CoV isolate Al-Hasa-SA2407/2016 (GenBank ID: MN654975.1) with a sequence identity of 99.86%. Furthermore, the isolates contained several amino acids substitutions in ORF1a (32), ORF1ab (25), S (2), ORF3 (4), ORF4b (4), M (3), ORF8b (1), and the N protein (1). The analysis further identified a recombination event in one of the reported sequences (OQ423284/MERS-CoV/dromedary/UAE-Al Ain/13/2016). Conclusion: Data presented in this study indicated the need for continuous identification and characterization of MERS-CoV to monitor virus circulation in the region, which is necessary to develop effective control measures. The mutations described in this investigation might not accurately represent the virus's natural evolution as artificial mutations may develop during cell culture passage. The isolated MERS-CoV strains would be helpful in new live attenuated vaccine development and efficacy studies.

3.
Int J Parasitol Parasites Wildl ; 21: 55-58, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37124672

ABSTRACT

Wild animals play a critical role in maintenance and transmission of various tick-borne pathogens. It is essential to identify these wild host species that can serve as important reservoirs of tickborne diseases. In the present study we investigated Dama gazelle (Nanger dama) as a potential novel reservoir of Theileria spp. A total of 53 blood samples collected from Dama gazelle as part of the Al Ain Zoo preventive medicine program were screened for Theileria spp. by qPCR using a commercial assay, followed by additional studies using conventional PCR targeting an approximate 450-base pair (bp) fragment of the V4 hypervariable region of the 18S ribosomal RNA (rRNA) gene. Sequencing and phylogenetic analysis of a subset (20) of PCR amplicons revealed Theileria isolates from gazelles of Al Ain Zoo clustered closely to Theileria sp. Dama Gazelle (AY735115) from USA and were far away or did not cluster with the known Theileria spp. of ruminants namely T. annulata, T. ovis, T. orientalis, T. luwenshuni, T.parva and T.sinensis. Theileria genotypes detected in gazelles of present study were clearly distinct from the other common theileria species of ruminants. The present finding throws light on the critical role of reservoir host in maintenance and transmission of pathogen.

4.
Vet Sci ; 10(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36669056

ABSTRACT

(1) Background: Peste des petits ruminants (PPR) is a highly contagious animal disease affecting small ruminants, leading to significant economic losses. There has been little published data on PPR virus (PPRV) infection in the United Arab Emirates (UAE); (2) Methods: four outbreaks reported in goats and Dama gazelle in 2021 were investigated using pathological and molecular testing; (3) Results: The infected animals showed symptoms of dyspnea, oculo-nasal secretions, cough, and diarrhea. Necropsy findings were almost similar in all examined animals and compliant to the classical forms of the disease. Phylogenetic analysis based on N gene and F gene partial sequences revealed a circulation of PPRV Asian lineage IV in the UAE, and these sequences clustered close to the sequences of PPRV from United Arab Emirates, Pakistan, Tajikistan and Iran; (4) Conclusions: PPRV Asian lineage IV is currently circulating in the UAE. To the best of our knowledge, this is a first study describing PPRV in domestic small ruminant in the UAE.

5.
Int J Microbiol ; 2022: 3411560, 2022.
Article in English | MEDLINE | ID: mdl-35519508

ABSTRACT

Escherichia coli (E. coli) is a zoonotic pathogen that showed growing resistance to antibiotics. No descriptive analysis highlights the threat of antimicrobial-resistant (AMR) of E. coli among livestock in the United Arab Emirates (UAE). Herein, we conducted phenotypic and genotypic resistance studies on E. coli isolates from livestock samples in the Emirate of Abu Dhabi based on routine diagnosis between the periods 2014-2019. Bacterial culture and disk diffusion methods were used for bacterial isolation and phenotypic resistance analysis. Resistance mechanism was studied by PCR targeting the most commonly resistance genes: ampicillin (bla SHV , bla CMY , and blaTEM-1B), tetracyclines (tetA and tetB), co-trimoxazole [sulfamethoxazole (sul1, sul2, and sul3) + trimethoprim (dfrA1 and dfrA17)], aminoglycosides [aph(3")-Ia, aph(6)-Id, and aac(3)-IV], and fluoroquinolones (qnrA and aac(6')-Ib-cr). Analysis of 165 E. coli isolates showed resistant to ampicillin, tetracycline, co-trimoxazole, gentamicin, and enrofloxacin by 157/165 (95.4%), 154/165 (93.6%), 141/165 (86%), 139/165 (85%), and 135/165 (82.7%), respectively. Predominant resistance gene/s detected by PCR were bla CMY (119/160, 72%) and blaTEM-1B (154/160, 96.3%) for ampicillin; tetA (162/164, 98.8%) and tetB (112/164, 68.3%) for tetracyclines; sul2 (156/164, 95%), sul3 (138/164, 84%), and dfra17 (74/164, 44.5%) for co-trimoxazole; aph(3")-Ia (134/164, 82.1%) and aph(6)-Id (161/164, 98.2%) for aminoglycosides; and aac(6')-Ib-cr (61/61, 100%) for enrofloxacin. Both phenotypic and genotypic analyses revealed that all E. coli isolates were multidrug-resistant (resistance to 3, 4, and 5 antibiotics classes by 3.6%, 57.6%, and 38.8%, respectively) carrying one or more resistance gene/s for the same antibiotic. PCR profiling confirmed the presence of resistance genes corresponding to their antibiotic profile. Results of the study will highlight the knowledge based on E. coli AMR related to livestock in UAE that may call for interventions.

6.
Vet Sci ; 9(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35448652

ABSTRACT

BACKGROUND: Fowl adenovirus serotype 4 (FAdV-4), causing inclusion body hepatitis (IBH) and hydropericardium hepatitis syndrome (HPS), is responsible for the significant economic losses in poultry industry worldwide. This study describes FAdV disease and molecular characteristics of the virus as the first report in UAE. METHODOLOGY: Clinical, necropsy, histopathology, qPCR and phylogenetic analysis of hexon gene were used to diagnose and characterize the virus. RESULTS: The age of the infected broiler chicken was 2-4 weeks. The morbidity and mortality rates ranged between 50 and 100% and 44 and 100%, respectively. Clinically, sudden onset, diarrhea, anemia and general weakness were recorded. At necropsy, acute necrotic hepatitis, with swollen, yellowish discoloration, enlarged and friable liver; hydropericarditis with hydropericardium effusions; and enlarged mottled spleen were observed. Histopathology examination revealed degeneration and necrosis, lymphocytic infiltration and inclusion bodies. The qPCR analysis detected the virus in all samples tested. Hexon gene sequence analysis identified FAdV serotype 4, species C as the major cause of FAdV infections in UAE in 2020, and this strain was closely related to FAdV-4 circulating in Saudi Arabia, Pakistan, Nepal and China. CONCLUSION: The serotype 4, species C, was the common FAdV strain causing IBH and HPS episodes in the region. This result may help design effective vaccination programs that rely on field serotypes.

7.
Viruses ; 12(8)2020 07 23.
Article in English | MEDLINE | ID: mdl-32717784

ABSTRACT

Camelpox is a viral contagious disease of Old-World camelids sustained by Camelpox virus (CMLV). The disease is characterized by mild, local skin or severe systemic infections and may have a major economic impact due to significant losses in terms of morbidity and mortality, weight loss, and low milk yield. Prevention of camelpox is performed by vaccination. In this study, we investigated the composition of a CMLV-based, live-attenuated commercial vaccine using next-generation sequencing (NGS) technology. The results of this analysis revealed genomic sequences of Modified Vaccinia virus Ankara (MVA).


Subject(s)
Orthopoxvirus/genetics , Phylogeny , Vaccinia virus/genetics , Viral Vaccines/genetics , Whole Genome Sequencing , Genome, Viral , High-Throughput Nucleotide Sequencing , Vaccines, Attenuated/genetics
8.
Emerg Microbes Infect ; 6(11): e101, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29116217

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) was identified on the Arabian Peninsula in 2012 and is still causing cases and outbreaks in the Middle East. When MERS-CoV was first identified, the closest related virus was in bats; however, it has since been recognized that dromedary camels serve as a virus reservoir and potential source for human infections. A total of 376 camels were screened for MERS-Cov at a live animal market in the Eastern Region of the Emirate of Abu Dhabi, UAE. In all, 109 MERS-CoV-positive camels were detected in week 1, and a subset of positive camels were sampled again weeks 3 through 6. A total of 126 full and 3 nearly full genomes were obtained from 139 samples. Spike gene sequences were obtained from 5 of the 10 remaining samples. The camel MERS-CoV genomes from this study represent 3 known and 2 potentially new lineages within clade B. Within lineages, diversity of camel and human MERS-CoV sequences are intermixed. We identified sequences from market camels nearly identical to the previously reported 2015 German case who visited the market during his incubation period. We described 10 recombination events in the camel samples. The most frequent recombination breakpoint was the junctions between ORF1b and S. Evidence suggests MERS-CoV infection in humans results from continued introductions of distinct MERS-CoV lineages from camels. This hypothesis is supported by the camel MERS-CoV genomes sequenced in this study. Our study expands the known repertoire of camel MERS-CoVs circulating on the Arabian Peninsula.


Subject(s)
Camelus/virology , Genetic Variation , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Animals , Cluster Analysis , Female , Genome, Viral , Genotype , Male , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics , United Arab Emirates
9.
PLoS One ; 12(9): e0184718, 2017.
Article in English | MEDLINE | ID: mdl-28902913

ABSTRACT

Camels are known carriers for many viral pathogens, including Middle East respiratory syndrome coronavirus (MERS-CoV). It is likely that there are additional, as yet unidentified viruses in camels with the potential to cause disease in humans. In this study, we performed metagenomic sequencing analysis on nasopharyngeal swab samples from 108 MERS-CoV-positive dromedary camels from a live animal market in Abu Dhabi, United Arab Emirates. We obtained a total of 846.72 million high-quality reads from these nasopharyngeal swab samples, of which 2.88 million (0.34%) were related to viral sequences while 512.63 million (60.5%) and 50.87 million (6%) matched bacterial and eukaryotic sequences, respectively. Among the viral reads, sequences related to mammalian viruses from 13 genera in 10 viral families were identified, including Coronaviridae, Nairoviridae, Paramyxoviridae, Parvoviridae, Polyomaviridae, Papillomaviridae, Astroviridae, Picornaviridae, Poxviridae, and Genomoviridae. Some viral sequences belong to known camel or human viruses and others are from potentially novel camel viruses with only limited sequence similarity to virus sequences in GenBank. A total of five potentially novel virus species or strains were identified. Co-infection of at least two recently identified camel coronaviruses was detected in 92.6% of the camels in the study. This study provides a comprehensive survey of viruses in the virome of upper respiratory samples in camels that have extensive contact with the human population.


Subject(s)
Camelus/virology , Virus Diseases/veterinary , Zoonoses/virology , Animals , Coronaviridae/classification , Coronaviridae/genetics , Coronaviridae/isolation & purification , Humans , Metagenomics , Phylogeny , Sequence Analysis, DNA , United Arab Emirates/epidemiology , Virus Diseases/virology
10.
Emerg Infect Dis ; 21(12): 2197-200, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26584223

ABSTRACT

In May 2015 in United Arab Emirates, asymptomatic Middle East respiratory syndrome coronavirus infection was identified through active case finding in 2 men with exposure to infected dromedaries. Epidemiologic and virologic findings suggested zoonotic transmission. Genetic sequences for viruses from the men and camels were similar to those for viruses recently detected in other countries.


Subject(s)
Asymptomatic Infections/epidemiology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Adult , Animals , Antibodies, Viral/analysis , Antibodies, Viral/blood , Camelus/blood , Camelus/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Humans , Male , Middle East Respiratory Syndrome Coronavirus/genetics , Oman/epidemiology , United Arab Emirates/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...