Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 5634, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379880

ABSTRACT

The effect of submerging geopolymer mortar samples in highly acidic solution for 7-, 28-, and 90-days on stability of mass and the development of compressive strength development was assessed experimentally. The mortar binder consisted of GGBS or blends of GGBS and fly ash activated using combinations of NaOH and Na2SiO3 solutions, and samples were cured in room temperature. It was found that maintaining mortar samples continuously under sulfuric acid doesn't cause reduction compressive strength or mass from one age to the other, up to 90 days. While decalcification, delaumination, and formation of calcium salts due to sulfate attack may have affected mass and strength, submerging samples under water supported formation of geopolymerization products C-A-S-H and N-A-S-H, and consequently increased the mass and compressive strength of cubic mortar samples with fly ash + GGBS blended binder. The resistance of mortar to sulfuric acid remained consistent when mortars were prepared using GGBS:fly ash ratio of 3:1, equal amounts of GGBS and fly ash, and GGBS as sole binder. When geopolymer mortar samples made with each of the three binders was left exposed to air after casting, compressive strength increased from 7- to 28-days after casting, but at 90-days, all mortar samples experienced decrease in compressive strength relative to the 28-day values. The relatively high content of GGBS (≥ 50%) and absence of curing water in relatively dry conditions caused shrinkage cracking and decrease in compressive strength.


Subject(s)
Construction Materials , Sulfuric Acids , Coal Ash , Compressive Strength
2.
Polymers (Basel) ; 13(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926028

ABSTRACT

Reducing the fingerprint of infrastructure has become and is likely to continue to be at the forefront of stakeholders' interests, including engineers and researchers. It necessary that future buildings produce minimal environmental impact during construction and remain durable for as long as practicably possible. The use of basalt fiber-reinforced polymer (BFRP) bars as a replacement for carbon steel is reviewed in this article by examining the literature from the past two decades with an emphasis on flexural strength, serviceability, and durability. The provisions of selected design and construction guides for flexural members are presented, compared, and discussed. The bond of BFRP bars to the surrounding concrete was reportedly superior to carbon steel when BFRP was helically wrapped and sand coated. Experimental studies confirmed that a bond coefficient kb = 0.8, which is superior to carbon steel, may be assumed for sand-coated BFRP ribbed bars that are helically wrapped, as opposed to the conservative value of 1.4 suggested by ACI440.1R-15. Code-based models overestimate the cracking load for BFRP-reinforced beams, but they underestimate the ultimate load. Exposure to an alkaline environment at temperatures as high as 60 °C caused a limited reduction in bond strength of BFRP. The durability of BFRP bars is influenced by the type of resin and sizing used to produce the bars.

SELECTION OF CITATIONS
SEARCH DETAIL
...