Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 32(3): 828-836, 2018 03.
Article in English | MEDLINE | ID: mdl-28871137

ABSTRACT

Overexpression of the BRE (brain and reproductive organ-expressed) gene defines a distinct pediatric and adult acute myeloid leukemia (AML) subgroup. Here we identify a promoter enriched for active chromatin marks in BRE intron 4 causing strong biallelic expression of a previously unknown C-terminal BRE transcript. This transcript starts with BRE intron 4 sequences spliced to exon 5 and downstream sequences, and if translated might code for an N terminally truncated BRE protein. Remarkably, the new BRE transcript was highly expressed in over 50% of 11q23/KMT2A (lysine methyl transferase 2A)-rearranged and t(8;16)/KAT6A-CREBBP cases, while it was virtually absent from other AML subsets and normal tissues. In gene reporter assays, the leukemia-specific fusion protein KMT2A-MLLT3 transactivated the intragenic BRE promoter. Further epigenome analyses revealed 97 additional intragenic promoter marks frequently bound by KMT2A in AML with C-terminal BRE expression. The corresponding genes may be part of a context-dependent KMT2A-MLLT3-driven oncogenic program, because they were higher expressed in this AML subtype compared with other groups. C-terminal BRE might be an important contributor to this program because in a case with relapsed AML, we observed an ins(11;2) fusing CHORDC1 to BRE at the region where intragenic transcription starts in KMT2A-rearranged and KAT6A-CREBBP AML.


Subject(s)
Gene Rearrangement , Leukemia, Myeloid, Acute/genetics , Nerve Tissue Proteins/genetics , Protein Interaction Domains and Motifs/genetics , Transcriptional Activation , Translocation, Genetic , Cell Line , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 16 , Epigenesis, Genetic , Exons , Gene Expression Regulation, Leukemic , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Introns , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/genetics , Promoter Regions, Genetic
2.
PLoS One ; 11(5): e0155165, 2016.
Article in English | MEDLINE | ID: mdl-27171398

ABSTRACT

Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers.


Subject(s)
Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , Immunotherapy , Oligonucleotide Array Sequence Analysis , Cell Line, Tumor , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Hematologic Neoplasms/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/pathology , Interferon-gamma/pharmacology , Real-Time Polymerase Chain Reaction , Regression Analysis , Reproducibility of Results , Skin/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...